期刊文献+

基于双向判决反馈均衡器的水声通信海试试验研究 被引量:8

Experimental Demonstration of Underwater Acoustic Communication Based on Bidirectional Decision Feedback Equalizer
下载PDF
导出
摘要 将被动时间反转镜(PTRM)技术与双向判决反馈均衡器(DFE)相结合,设计并实现了高可靠性的单载波水声通信解码方案。接收端采用PTRM压缩信道多途结构,聚焦信号能量;利用双向DFE将传统DFE和反向DFE输出结果合并,进一步降低错误判决的概率,提高系统稳健性。在时不变浅海水声信道环境中,开展的水声通信试验数据处理结果表明:与传统DFE相比,双向DFE能够获得一定的处理增益,5 km、7 km和10 km通信距离上的均衡后输出信噪比分别提高了2.74 d B、2.36 d B和1.54 d B,有效改善了解码性能。 A robust single carrier underwater acoustic communication system is designed by combining bidirectional decision feedback equalizer( DFE) with passive time reversal mirror( PTRM). At the receiver,PTRM is used to suppress the multipath spread and focus the signal energy. And then the bidirectional DFE is used to combine the outputs from the traditional DFE and the backward DFE,decreasing the errors brought by a wrong decision and improving the robustness of traditional DFE. The data processing results from a shallow water experiment in underwater acoustic channel stable environment show that the bidirectional DFE could get some processing gain,and the output signal-to-noise ratios are increased by2. 74 d B,2. 36 d B,and 1. 54 d B at 5 km,7 km,and 10 km,respectively. The decoding performance is effectively improved compared with the traditional DFE.
出处 《兵工学报》 EI CAS CSCD 北大核心 2016年第3期553-558,共6页 Acta Armamentarii
基金 国家自然科学基金面上项目(51179034 61471137) 船舶预先研究支撑技术基金项目(13J3.1.5)
关键词 通信技术 水声通信 被动时间反转镜 双向判决反馈均衡器 稳健性 communication underwater acoustic communication passive time reversal mirror bidirectional decision feedback equalizer robustness
  • 相关文献

参考文献16

  • 1Sazontov A G, Malekhanov A I. Matched field signal processing in underwater sound channels [ J ]. Acoustical Physics, 2015, 61(2) : 213 -230. 被引量:1
  • 2惠俊英,生雪莉编著..水下声信道[M].北京:国防工业出版社,2007:150.
  • 3HUI Jun-ying, SHENG Xue-li. Underwater acoustic channel[ M]. 2nd ed. Beijing: National Defense Industry Press, 2007. ( in Chi- nese ). 被引量:1
  • 4Stojanovic M, Catipovic J A, Proakis J G. Phase-coherent digital communications for underwater acoustic channels [ J ]. IEEE Jour- nal of Oceanic Engineering, 1994, 19 ( 1 ) : 100 - 111. 被引量:1
  • 5Song H C, Hodgkiss W S, Kuperman W A. High-rate synthetic aperture communications in shallow water [ J]. Journal of the A- coustical Society of America, 2009, 126(6) : 3057 - 3061. 被引量:1
  • 6Edelmann G F, Song H C, Kim S, et al. Underwater acoustic communications using time reversal [ J]. IEEE Journal of Oceanic Engineering, 2005, 30(4): 852-864. 被引量:1
  • 7Yang T C. Temporal resolutions of time-reversal and passive-phase conjugation for underwater acoustic communications [ J ]. IEEE Journal of Oceanic Engineering, 2003, 28 ( 2 ) : 229 - 245. 被引量:1
  • 8Rouseff D, Jackson D R, Fox W L J, et al. Underwater acoustic communication by passive-phase conjugation: theory and experi- mental results [ J]. IEEE Journal of Oceanic Engineering, 2001, 61(4): 821 -831. 被引量:1
  • 9Song H C, Hodgkiss W S, Kuperman W A,et al. Improvement of time reversal communications using adaptive channel equalizers [ Jl. IEEE Journal of Oceanic Engineering, 2006, 31 ( 2 ) : 487 - 496. 被引量:1
  • 10Song H C,Kim J S, Hodgkiss W S, ct al. High-rate multiuser com- munications in shallow water [ J ]. Journal of the Acoustical Socie- ty of America, 2010, 128 (5) : 2920 - 2925. 被引量:1

同被引文献41

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部