期刊文献+

远程高速水声通信及实验研究 被引量:8

Experimental Research on Long-Range High-speed Underwater Acoustic Communication
下载PDF
导出
摘要 严重受限的带宽是导致目前远程水声通信系统数据率较低的主要原因,针对这一问题,提出了带宽利用率高的相位相干远程高速水声通信方法;利用8PSK和16QAM信号进行了远程(30km)海上实验研究,结果表明,采用内嵌二阶锁相环的自适应判决反馈均衡器接收机可消除慢变水声信道的影响,在距离为30km,误码率在10^(-3)内的条件下,数据率可达1200 bit/s和1600 bit/s。 In the current long--range underwater acoustic communication system, the transmission bandwidth is severely restricted and leds to the lower data rate. To solve this problem, high bandwidth effective phase coherent underwater acoustic communication system was proposed in this paper. 8PSK and 16QAM signals were used to a long--range (30km) offshore experimental study. The experiment results show that the receiver which used the second--order phase--locked loop adaptive decision feedback equalizer have a good performance to eliminate the effects induced by slow--varying underwater acoustic channel, and the system's data rate can be up to 1200 bit/s and 1600 bit/s at 30km distance with the bit error rate is .
出处 《计算机测量与控制》 CSCD 北大核心 2010年第8期1837-1839,共3页 Computer Measurement &Control
基金 教育部高等学校博士学科点专项科研基金项目(20070699020)
关键词 高速水声通信 自适应均衡器 带宽利用率 二阶数字锁相环 high--speed underwater acoustic communication adaptive equalizer bandwidth availability ratio second--order digital phase locked loop
  • 相关文献

参考文献7

  • 1Stojanovic M, Catipovic J A, Proakis J G. Phase--coherent digital communications for underwater acoustic channels [J]. IEEE J Oceanic Eng, 1994, 19 (1): 100-111. 被引量:1
  • 2Stojanovic M, Catipovic J A, Proakis J G. Recent advance in high speed underwater acoustic communications [J]. IEEE J Oceanic Eng, 1996, 21 (2): 125-136. 被引量:1
  • 3Kilfoyle D B, Baggeroer A B. The State of the Art in Underwater Acoustic Telemetry [J]. IEEE J Oceanic Eng, 2000, 25 (1): 4 -27. 被引量:1
  • 4Sharif B S, Neasham J A, Hinton O R, Adams A E. Performance of an adaptive multichannel combiner for long range underwater communications[J]. IEE Electronics letters, 1996, 32 (3): 182 - 183. 被引量:1
  • 5Sangfelt E, Lsson N, Nilsson B, et al. Acoustic communication in shallow water [A]. UDT Proceeding [C]. 2004, (1) : 1 - 10. 被引量:1
  • 6郭中源,陈岩,贾宁,郭杰,陈庚,莫福源,马力.水下数字语音通信系统的研究和实现[J].声学学报,2008,33(5):409-418. 被引量:21
  • 7何成兵.UUV水声通信调制解调新技术研究[D].西北工业大学博士论文,2009. 被引量:1

二级参考文献27

  • 1陆铭慧,张碧星,汪承灏.时间反转法在水下通信中的应用[J].声学学报,2005,30(4):349-354. 被引量:30
  • 2刘云涛,蔡惠智,杨莘元.相位调制水声高速通信中的一种空间滤波算法[J].声学学报,2006,31(1):79-84. 被引量:5
  • 3Green M D, Rice J A. Channel-tolerant FH-MFSK acoustic signaling for underwater communications and networks. IEEE Journal of Oceanic Engineering. 2000; 25(1): 28-39. 被引量:1
  • 4Proakis J G, Sozer E M, Rice J A. Communications magazine. IEEE, 2001; 39(11): 114. 被引量:1
  • 5Kilfoyle D B, Baggeroer A B. The state of the art in underwater acoustic telemetry. IEEE Journal of Oceanic Engineering, 2000; 25(1): 4-27. 被引量:1
  • 6Beaujean P-P J, LeBlanc L R. Adaptive array processing for high-speed acoustic communication in shallow water. IEEE Journal of Oceanic Engineering, 2004; 29(3): 807-- 823. 被引量:1
  • 7Stojanovic M, Captipovic J A, Proakis J G. Phase Coherent Digital Communications for Underwater Acoustic Channels. IEEE Journal of Oceanic Engineering, 1994; 19(1): 100 111. 被引量:1
  • 8Stojanovic M. Recent advances in high-speed underwater acoustic communications. IEEE Journal of Oceanic Engineering, 1996; 21(2): 125--136. 被引量:1
  • 9Stojanovic M, Captipovic J A, Proakis J G. Adaptive multichannel combining and equalization for underwater acoustic communications. J. Acoust. Soc. Am., 1993; 94(3-1): 1621--1631. 被引量:1
  • 10Bryan Woodward, Hayri Sari. Digital underwater acoustic voice communications. IEEE Journal of Oceanic Engineering, 1996; 21(2): 181--192. 被引量:1

共引文献20

同被引文献56

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部