期刊文献+

基于半监督稀疏多流形嵌入的高光谱影像分类 被引量:5

Classification of Hyperspectral Images Based on Semi-supervised Sparse Multi-manifold Embedding
下载PDF
导出
摘要 提出了一种半监督稀疏多流形嵌入方法,并应用于高光谱影像分类.该方法充分利用少量标记和大量无标记样本,采用稀疏表示方法得到样本的稀疏系数,并选取来自同一流形的点作为近邻点,然后构建相似图来表征多流形结构,得到样本在每个流形上低维鉴别特征,增加来自同一流形的数据点聚集性,进而提升分类性能.本文方法在PaviaU和Salinas两个高光谱数据集上的总体分类准确度分别达到84.91%和89.74%,相较于其他方法明显提高了地物分类性能. In this paper,a semi-supervised learning method called semi-supervised sparse multi-manifold embedding(S3 MME)was proposed for the classification of hyperspectral image.S3 MME exploits both labeled and unlabeled samples to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation,which constructs an appropriate graph to characterize the manifold structure.Then it tries to extract discriminative features on each manifold in low dimensional space such that the data points in the same manifold become closer.The overall classification accuracies of the proposed method can reach 84.91% and 89.74% on PaviaU and Salinas hyperspectral data sets respectively, which significantly improves the classification of land cover compared with the conventional methods.
出处 《光子学报》 EI CAS CSCD 北大核心 2016年第3期126-132,共7页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.41371338 61101168) 重庆市基础与前沿研究计划(No.cstc2013jcyjA40005) 中央高校基本科研业务费项目(Nos.106112013CDJZR125501 1061120131204) 重庆市研究生科研创新项目(No.CYB15052)资助~~
关键词 高光谱影像分类 维数约简 多流形 稀疏表示 半监督学习 Hyperspectral image classification Dimensionality reduction Multiple manifolds Sparse representation Semi-supervised learning
  • 相关文献

参考文献17

  • 1CHEN Jia-wei, JIAO Li cheng. Hyperspectral imagery classification using local collaborative representation[J]. International Journal of Remote Sensing, 2015, 36(3): 734- 748. 被引量:1
  • 2杜博,张乐飞,张良培,胡文斌.高光谱图像降维的判别流形学习方法[J].光子学报,2013,42(3):320-325. 被引量:12
  • 3刘嘉敏,罗甫林,黄鸿,刘亦哲.应用相关近邻局部线性嵌入算法的高光谱遥感影像分类[J].光学精密工程,2014,22(6):1668-1676. 被引量:13
  • 4TENEBAUM J, SILVA V, LANGFORD J. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319-2323. 被引量:1
  • 5SOWEIS S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500) : 2323- 2326. 被引量:1
  • 6BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. 被引量:1
  • 7GARCiA-GOMEZ J, GOMEZ-SANCHIS J, ESCANDELL- MONTERO P, et al. Sparse manifold clustering and embedding to discriminate gene expression profiles of glioblastoma and meningioma tumors[J]. Computers in Biology and Medicine, 2013, 43(11) : 1863-1869. 被引量:1
  • 8YAN Shui-cheng, XU Dong, ZHANG Ben-yu, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51. 被引量:1
  • 9王永茂,徐正光,赵珊.基于自适应近邻图嵌入的局部鉴别投影算法[J].电子与信息学报,2013,35(3):633-638. 被引量:5
  • 10D'ASPREMONT A, E1 GHAOUI L, JORDAN M I, et al. A direct formulation for sparse PCA using semi definiteprogramming[J]. Siam Review, 2007, 49(3) : 434-448. 被引量:1

二级参考文献66

  • 1Bioucas Dias J M, Nascimento J M P. Hyperspectral subspace identification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2435-2445. 被引量:1
  • 2He J, Zbang I., Wang Q, et at. Using diffusion geometric coordinates for hyperspectral imagery representation [J]. IEEE Geoscienees and Remote Sensing Letters, 2009, 6 (4) : 767-771. 被引量:1
  • 3Zhang L P, Huang X. Object-oriented subspace analysis for airborne hyperspeetral remote sensing imagery [J]. Neurocomputing, 2009, 73(4/6): 927-936. 被引量:1
  • 4Dianat R, Kasaei S. Dimension reduction of remote sensing images by incorporating spatial and spectral properties [J]. International Journal of Electronics and Communications, 2010, 64(8): 729-732. 被引量:1
  • 5Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. 被引量:1
  • 6Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces Fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. 被引量:1
  • 7Tenenbaum J B, de Silva V, l.angford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319-2323. 被引量:1
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290 (5500) : 2323-2326. 被引量:1
  • 9He X F, Cai D, Yan S C, et al. Neighborhood preserving embedding [C] //Proceedings of the 10th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2005, 2:1208-1213. 被引量:1
  • 10Xiao R, Zhao Q J, Zhang D, et al. Facial expression recognition on multiple manifolds [J]. Pattern Recognition, 2011, 44(1): 107-116. 被引量:1

共引文献31

同被引文献33

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部