摘要
高光谱成像可将图像和光谱相结合,同时获得目标对象的图像和光谱信息,已在农产品定性和定量分析检测方面得到广泛利用。利用可见-近红外高光谱成像结合化学计量学方法对贮藏期内灵武长枣果糖含量进行无损检测。采用高效液相色谱测量长枣果糖含量的化学值,可见-近红外高光谱系统采集长枣的高光谱图像,提取每个样本感兴趣区域的平均光谱;建立长枣贮藏期的径向基核函数支持向量机(radial basis kernel function support vector machine,RBF-SVM)模型;分别选用正交信号校正法(orthogonal signal correction,OSC)、多元散射校正(multiplicative scatter correction,MSC)、中值滤波(median-filter,MF)、卷积平滑(savitzky-golay,SG)、归一化(normalization,Nor)、高斯滤波(gaussian-filter,GF)和标准正态变换(standard normalized variate,SNV)等方法对原始光谱进行预处理;为减少数据量,降低维度,提高运算速度,采用反向区间偏最小二乘法(backward interval partial least squares,BiPLS)、间隔随机蛙跳算法(interval random frog,IRF)和竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)对光谱数据提取特征变量;建立全波段和特征波段的偏最小二乘回归(partial least squares regression,PLSR)和主成分回归(principle component regression,PCR)长枣果糖含量预测模型。结果表明:RBF-SVM判别模型校正集准确率为98.04%,预测集准确率为97.14%,能很好地预测长枣的贮藏期;利用BiPLS,IRF及CARS进行降维处理,提取特征波长个数为100,63和23,占原光谱数据的80%,50.4%和18.4%;为简化模型运算过程并提高模型精度,采用CARS算法对BiPLS及IRF算法所选取的特征波长进行二次筛选,分别优选出18和15个特征波长,占原光谱数据的14.4%和12%,显著减少特征波长数;将全波段光谱与提取出的特征波长分别建立长枣果糖含量的PLSR及PCR预测模型,优选出CARS提取特征波长建立的PLSR模型效果
Hyperspectral imaging technique which is a non-destructive method combines image and spectral techniques to obtain image and spectral information of target objects’and qualitative and quantitative analysis using spectral data has been widely used in the field of agricultural product testing.This paper uses visible/near-infrared spectroscopic imaging technique combined with chemometrics methods to achieve the non-destructive detection of fructose content of Lingwu long jujube during storage.The chemical value of jujube fructose was determined by High performance liquid chromatography(HPLC),and the hyperspectral images of long jujubes were collected using near-infrared hyperspectral system,and the average spectral data for each sample area of interest were extracted.Support Vector Machine With RBF Nucleus(RBF-SVM)Model for establishing storage time of long jujube.Orthogonal Signal Correction(OSC),Multiple Scatter Correction(MSC),Median Filter(MF),Savitzky-Golay(SG),Normalize(Nor),Gaussian filter(GF)and Standard Normalized Variate(SNV)were used to preprocess the original spectral data.To reduce the amount and dimension of data,the characteristic wavelengths were extracted by Backward interval Partial Least Squares(BiPLS),Interval Random Frog(IRF)and Competitive Adaptive Reweighted Sampling(CARS);the partial least squares regression(PLSR)model and principle component regression(PCR)were established based on full spectra and characteristic wavelengths for predicting fructose of Lingwu long jujube.The results indicated that the accuracy of the RBF-SVM model calibration set was 98.04%,and the accuracy of the prediction set was 97.14%,which could well predict the storage time of the jujube;The BiPLS,IRF and CARS methods were used to select characteristic wavelengths with 100,63 and 23 from 125 wavelengths,respectively.In order to simplify the model and improve the accuracy of prediction of the model,the CARS algorithm was used to perform secondary extracted characteristic wavelengths of BiPLS and IRF and select charact
作者
万国玲
刘贵珊
何建国
杨晓玉
程丽娟
张翀
WAN Guo-ling;LIU Gui-shan;HE Jian-guo;YANG Xiao-yu;CHENG Li-juan;ZHANG Chong(School of Agriculture,Ningxia University,Yinchuan 750021,China)
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2019年第10期3261-3266,共6页
Spectroscopy and Spectral Analysis
基金
国家自然科学基金项目(31560481)
国家自然科学基金项目(75002108A1651)资助
关键词
高光谱成像技术
果糖
贮藏期
高效液相色谱法
偏最小二乘回归
Hyperspectral imaging technique
Fructose
Storage
High performance liquid chromatography
Partial least squares regression