期刊文献+

高光谱图像降维的判别流形学习方法 被引量:12

Discriminant Manifold Learning Approach for Hyperspectral Image Dimension Reduction
下载PDF
导出
摘要 本文提出了一种高光谱图像降维的判别流形学习方法.针对获取的大量遥感对地观测数据存在大量冗余信息的特点,引入改进的流形学习方法对高光谱遥感数据进行降维处理,以提高遥感图像自动分类的总体准确度.该方法充分利用遥感图像自动分类中训练样本的判别信息,将输入样本的类别信息加入到常规流形学习方法的框架中,从本质上提高输出的特征在低维空间中的判别力.同时,引入线性化模型以解决流形学习方法中常见的小样本问题.对高光谱遥感图像自动分类的实验表明,基于判别流形学习的高光谱遥感图像自动分类方法能够显著地提高图像分类准确度. A discriminant manifold learning approach for hyperspectral image dimension reduction was proposed.In order to overcome the high dimensional and high redundancy of remotely sensed earth observation images,a modified manifold learning algorithm was suggested for dataset linear dimensional reduction to improve the performance of image classification.The proposed method addressed the discriminative information of given training samples into the current manifold learning framework to learn an optimal subspace for subsequent classification,in particular,the linearization of discriminant manifold learning is introduced to deal with the out of sample problem.Experiments on hyperspectral image demonstrated that the proposed method could achieve higher classification rate than the conventional image classification technologies.
出处 《光子学报》 EI CAS CSCD 北大核心 2013年第3期320-325,共6页 Acta Photonica Sinica
基金 国家自然科学基金(No.61102128) 国家重点基础研究发展计划(Nos.2012CB719905 2011CB707105) 中国博士后特别科学基金资助
关键词 流形学习 高光谱降维 分类 Manifold learning Hyperspectral dimensional reduction Classification
  • 相关文献

参考文献22

  • 1CHANG C I. Hyperspectral data exploitation: theory and applications[M]. New Jersey: Wiley-Interscience, 2007. 被引量:1
  • 2GOETZ A F H, VANE G, SOLOMON J E, et al. Imaging spectrometry for earth remote sensing[J]. Science, 1985, 228(4704): 1147-1153. 被引量:1
  • 3KESHAVA N, MUSTARD J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57. 被引量:1
  • 4HUGHES G F. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63. 被引量:1
  • 5BACHMANN C M, AINSWORTH T L, FUSINA R A. Exploiting manifold geometry in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 441-454. 被引量:1
  • 6CHANG C I, WANG S. Constrained band selection for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1575-1585. 被引量:1
  • 7HARSANYI J C, CHANG C I. Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 779-785. 被引量:1
  • 8FARRELL J M D, MERSEREAU R M. On the impact of pca dimension reduction for hyperspectral detection of difficult targets[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 192-195. 被引量:1
  • 9FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Human Genetics, 1936, 7(2): 179-188. 被引量:1
  • 10ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(22): 2323-2326. 被引量:1

同被引文献178

引证文献12

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部