期刊文献+

包空间多示例图像自动分类 被引量:2

Automatic classification of multiple-instance image based on the bag space
原文传递
导出
摘要 为了有效地解决多示例图像自动分类问题,提出一种将多示例图像转化为包空间的单示例描述方法。该方法将图像视为包,图像中的区域视为包中的示例,根据具有相同视觉区域的样本都会聚集成一簇,用聚类算法为每类图像确定其特有的"视觉词汇",并利用负包示例标注确定的这一信息指导典型"视觉词汇"的选择;然后根据得到的"视觉词汇"构造一个新的空间——包空间,利用基于视觉词汇定义的非线性函数将多个示例描述的图像映射到包空间的一个点,变为单示例描述;最后利用标准的支持向量机进行监督学习,实现图像自动分类。在Corel图像库的图像数据集上进行对比实验,实验结果表明该算法具有良好的图像分类性能。 In order to effectively solve the multiple-instance image classification problem,we put forward a new classification method,which transforms the multiple-instance image into a single instance image in the new space-bag space.First,the whole image is regarded as a bag and each region as an instance of that bag.According to the same visual regions of image samples are put into one cluster and k-means clustering algorithm is used to determine the visual words for each class of images.At this step,we use the information that labels of negative samples are all known has been used to select the typical visual words.Then,we construct a new bag space with these visual words and use a nonlinear function based on these visual words to transform each multiple-instance image into a point in the bag space.Finally,standard SVMs are trained in the bag feature space to classify the images.Experimental results and comparisons on the Corel image set are given to illustrate the performance of the new method.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第9期1093-1100,共8页 Journal of Image and Graphics
基金 国家自然科学基金青年基金项目(61100120) 国家自然科学基金面上项目(41074090) 河南理工大学博士基金项目(B2012-0670)
关键词 包空间 多示例学习 图像分类 视觉词汇 bag space multiple-instance learning image classification visual words
  • 相关文献

参考文献3

二级参考文献38

  • 1蔡自兴,李枚毅.多示例学习及其研究现状[J].控制与决策,2004,19(6):607-610. 被引量:12
  • 2王小玲,谢康林.基于模糊逻辑的图像检索研究[J].控制与决策,2005,20(12):1355-1359. 被引量:1
  • 3路晶,马少平.基于概念索引的图像自动标注[J].计算机研究与发展,2007,44(3):452-459. 被引量:10
  • 4Duygulu P, Barnard K, Freitas J de, et al. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary [G] //LNCS2353: Proe of ECCV. Berlin: Springer, 2002:97-112 . 被引量:1
  • 5Barnad K, Duygulu P, Fretias N, et al. Matching words and pictures [J]. Journal of Machine Learning Research, 2003, 3:1107-1135 被引量:1
  • 6Jeon J, Lavrenko V, Manmatha R. Automatic image annotation and retrieval using cross-media relevance models [C] //Proc of the 26th Annual Int ACM SIGIR Conf. New York: ACM, 2003:119-126 被引量:1
  • 7Pan J Y, Yang H J, Duygulu P, et al. Automatic image captioning [C]//Proc of the 2004 IEEE Int Conf on Multimedia and Expo (ICME'04). 2004:1987-1990 被引量:1
  • 8Carneiro G, Vaseoncelos N. Formulating semantics image annotation as a supervised learning problem [C]//Proc of IEEE Conf Computer Vision and Pattern Recognition (CVPR'05). Los Alamitos, CA: IEEE Computer Society, 2005 : 163-168 被引量:1
  • 9Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the multiple-instance problem with axis-parallel rectangles [J]. Artificial Intelligence, 1997, 89(1-2): 31-71 被引量:1
  • 10Maron O, Lozano-Perez T. A framework for multipleinstance learning [G]. Advances in Neural Information Processing Systems 11. Cambridge: MIT Press, 1998: 570- 576 被引量:1

共引文献38

同被引文献22

  • 1SINGARAJU D, VIDAL R. Using global bag of features models in random fields for joint categorization and segmentation of objects [C]//CVPR 2011: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011:2313-2319. 被引量:1
  • 2LI F, PERONA P. A Bayesian hierarchical model for learning natu- ral scene categories [ C]//CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005:524-531. 被引量:1
  • 3GRAUMAN K, DARRELL T. The pyramid match kernel: discrimi- native classification with sets of image features [ C]// ICCV 2005: Proceedings of the 10th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2005:1458-1465. 被引量:1
  • 4van GEMERT J C, VEENMAN C J, SMEULDERS A W M, et al. Visual word ambiguity [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7) : 1271 - 1283. 被引量:1
  • 5BAY H, TUYTELAARS T, van GOOL L. SURF: speeded up ro- bust features [ C]//ECCV 2006: Proceedings of the 9th European Conference on Computer Vision. Berlin: Springer, 2006:404 - 417. 被引量:1
  • 6CHANG C, LIN C. LIBSVM: a library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): Article No. 27. 被引量:1
  • 7SIMARD P Y, BoTrou L, HAFFNER P, et al. Boxlets: a fast convolution algorithm for signal processing and neural networks [ C] // Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems. Cambridge: MIT Press, 1999: 571 - 577. 被引量:1
  • 8VIOLA P, JONES M. Rapid object detection using a boosted cas- cade of simple features [ C]// CVPR 2001: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001 : I- 511 - I- 518. 被引量:1
  • 9DONG W, WANG Z, CHARIKAR M, et al. Efficiently matching sets of features with random histograms [ C]/! Proceedings of the 16th ACM International Conference on Multimedia. New York: ACM, 2008:179 - 188. 被引量:1
  • 10CHARIKAR M S. Similarity estimation techniques from rounding algo- rithms [C]// Proceedings of the Thirty-Fourth Annual ACM Symposi- um on Theory of Computing. New York: ACM, 2002: 380- 388. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部