期刊文献+

基于概念索引的图像自动标注 被引量:10

Automatic Image Annotation Based on Concept Indexing
下载PDF
导出
摘要 在基于内容的图像检索中,建立图像底层视觉特征与高层语义的联系是个难题.一个新的解决方法是按照图像的语义内容进行自动标注.为了缩小语义差距,采用基于支持向量机(SVM)的多类分类器为空间映射方法,将图像的底层特征映射为具有一定高层语义的模型特征以实现概念索引,使用的模型特征为多类分类的结果以概率形式组合而成.在模型特征组成的空间中,再使用核函数方法对关键词进行了概率估计,从而提供概念化的图像标注以用于检索.实验表明,与底层特征相比,使用模型特征进行自动标注的结果F度量相对提高14%. Automatic image annotation is an important but highly challenging problem in content-based image retrieval. A new procedure for providing images with semantic keywords is introduced. To over the semantic gap, classified images are used to train a special multi-class classifier based on support vector machine (SVM), which maps the visual image feature into the model space to achieve the concept indexing. The model-vectors that construct the model space are the combination of the multi-class classifier's outputs, and applied to each individual image. Soft labels are then given to the unannotated images during the propagation procedure in the model space, and as keyword, each label is associated with a membership confidence estimated by a biased kernel regression algorithm. Thus conceptualized annotations of images could be provided to users. The empirical study on the COREL image database shows that the proposed model-vectors outperform visual features 14.0 % in F-measure for annotation comparatively.
作者 路晶 马少平
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第3期452-459,共8页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展规划基金项目(2004CB318108) 国家自然科学基金项目(60223004 60321002 60303005 60503064) 教育部科学技术研究基金重点项目(104236)
关键词 图像自动标注 多类分类器 空间映射 模型向量 automatic image annotation multi-class classifier space mapping model-vector
  • 相关文献

参考文献15

  • 1Wang James,Li Jia,G Wiederhold.Simplicity:Semanticssensitive integrated matching for picture libraries[J].IEEE Trans on Pattern and Machine Intell,2001,23(9):947-963 被引量:1
  • 2J Jeon,V Lavrenko,R Manmatha.Automatic image annotation and retrieval using cross-media relevance models[C].The 26th Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval,Toronto,Canada,2003 被引量:1
  • 3Pan JiaYu,Yang HyungJeong,Duygulu Pinar,et al.Automatic image captioning[ C ].The 2004 IEEE Int'l Conf on Multimedia and Expo (ICME'04),Taipei,Taiwan,2004 被引量:1
  • 4A Vailaya,M Figueiredo,A Jain,et al.A Bayesian frame work for semantic classification of outdoor vacation images[C].Storage and Retrieval for Image and Video Databases Ⅶ,San Jose,CA,1999 被引量:1
  • 5G Sychay,E Chang,K Goh.Effective image annotation via active learning[C].IEEE Int'l Conf on Multimedia and Expo (ICME'02),Lausanne,Switzerland,2002 被引量:1
  • 6Li Jia,Wang James.Automatic linguistic indexing of pictures by a statistical modeling approach[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(9):1075-1088 被引量:1
  • 7Karypis George,Han Eui-Hong.Concept indexing:A fast dimensionality reduction algorithm with applications to document retrieval & categorization[R].Twin Cities,USA:University of Minnesota,Tech Rep:TR-00-0016,2000 被引量:1
  • 8Karypis George,Han Eui-Hong.Fast supervised dimensionality reduction algorithm with applications to document categorization & retrieval[C].In:Proc of the 2000 ACM CIKM Int'l Conf on Information and Knowledge Management.New York:ACM Press,2000 被引量:1
  • 9Chang Edward,Goh Kingshy,Sychay Gerard,et al.CBSA:Content-based soft annotation for multimodal image retrieval using Bayes point machines[J].IEEE Trans on Circuits and Systems for Video Technology,2003,13 (1):26-38 被引量:1
  • 10C Zhang,T Chen.An active learning framework for contentbased information retrieval[J].IEEE Trans on Multimedia,2002,4(2):260-268 被引量:1

二级参考文献15

  • 1M J Swain, D H Ballard. Color indexing. International Journal of Computer Vision, 1991, 7(1) : 11-32. 被引量:1
  • 2M Stricker, M Orengo. Similarity of color images. In: W Niblack, R C Jain eds. Proc of SPIE Storage and Retrieval for Image and Video Databases, Vol 2420. San Jose, CA, USA:SPIE Press, 1995. 381-392. 被引量:1
  • 3G Pass, R Zabih, J Miller. Comparing images using color coherence vectors. In: Proc of ACM Conf on Multimedia. Boston MA, USA: ACM Press, 1996. 65-73. 被引量:1
  • 4J Huang, S R Kumar, M Mitra et al. Image indexing using color correlograms. In: Prcc of IEEE Conf on Computer Vision and Pattern Recognition. San Jose, Puerto Rico, USA: IEEE CS Press, 1997. 762-768. 被引量:1
  • 5H Tamura, S Mori, T Yamawaki. Texture features corresponding to visual perception. IEEE Trans on System, Man and Cybernetics, 1978, 8(6): 831-836. 被引量:1
  • 6W Niblack et al. The QBIC project: Querying images by content using color, texture and shape. In: W Niblack ed. Prcc of SPIE Storage and Retrieval for Image and Video Databases, Vol 1908.San Jose, CA, USA: SHE Press, 1993. 173-187. 被引量:1
  • 7J R Batch, C Fuller, A Gupta et al. The Virage image search engine: An open franaework for image management. In: I K Sethi, R C Jain eels. Proc of SPIE Storage and Retrieval for Image and Video Databases, Vol 2670. San Jose, CA, USA: SPIE Press, 1996. 76-87. 被引量:1
  • 8J Dowe. Content-based retrieval in multimedia imaging. In: W Niblack, R C Jain eds. Proc of SPIE Storage and Retrieval for Image and Video Databases, Vol 1908. San Jose, CA, USA:SPIE Press, 1993. 164- 167. 被引量:1
  • 9J Mao, A K Jain. Texture classification and segmentation using multi-resolution simultaneous autoregressive models. Pattern Recognition, 1992, 25(2): 173-188. 被引量:1
  • 10W Y Ma,H J Zhang. Content-based image indexing and retrieval.In: Borko Furht ed. Handbook of Multimedia Computing. LLC:CRC Press, 1998. 227-254. 被引量:1

共引文献26

同被引文献96

引证文献10

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部