期刊文献+

抗高过载微流体惯性开关 被引量:3

A microfluidic inertial switch with response characteristics to high acceleration
下载PDF
导出
摘要 基于微连通器结构,提出了一种使用盐水(Na Cl溶液)作为工作流体且具有高的抗过载能力的微流体惯性开关。分析了液滴的分离机理,设计了开关的流道结构。然后,对开关进行了理论分析,建立了开关模型。最后,利用流体动力学仿真和样机实验相结合的方法,对开关结构和功能进行了验证。验证结果显示:在幅值为30 000 g阶跃型加速度作用下,开关的工作流体仍未发生分离,加速度的幅值与开关响应时间相关。另外,开关样机能够使盐水液面形成高度差,样机的静态加速度阈值为134.6 g^152.3 g,非常接近其理论计算的加速度阈值142.7 g。得到的结果表明,采用的微连通器结构能够极大地增强微流体惯性开关的抗液体分离能力,能够对加速度幅值进行区分,并实现闭锁功能,同时显示了高的抗过载能力。 On the basis of micro communicating vessels, a novel microfluidic inertial switch with excellent response characteristics to a high acceleration over 30 000 g was proposed. Brine was selected as the working- fluid due to its conductivity and non-toxicity. The mechanism of droplet separation was discussed, and the channel structure of the switch was designed. Then, the working principle of the switch was theoretically analyzed and modeled. Finally, by the combination of Computational Fluid Dynamics(CFD) simulation technology and a prototype experiment, the structure and functions of the switch were verified. The results show that fluid dispersion problem has been avoided even under the 30 000 g high step acceleration, and the bigger acceleration amplitude leads to the shorter response time. By the review of the experiment results, the height difference of the two liquid-gas interfaces of the brine can be realized at the initial state and the static acceleration threshold of the prototype is between 134.6 g to 152.3 g, which is agreed well with its theoretical counting acceleration threshold 142.7 g. The experiments indicate that the micro communicating vessels efficiently improve the anti-dispersion ability of the microfluidic inertial switch. It separates the acceleration amplitude and shows good latching function and higher response characteristics to the high acceleration.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2016年第3期526-532,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51475245)
关键词 微流体惯性开关 微加速度开关 微连通器 抗高过载 microfluidic inertial switch micro acceleration switch micro communicating vessel anti high acceleration
  • 相关文献

参考文献13

  • 1KIM J W,SHEN W J,KIM CH J,et al..A micromechanical switch with electrosstatically driven liquid-mental droplet[J].Sensors and Actuators A,2002,(97-98):672-679. 被引量:1
  • 2SIMON J,SAFFER S,KIM CH J.A liquid-filled microrelay with a moving mercury microdrop[J].Journal of Micro-electro-mechanical Systems,1997(6):208-216. 被引量:1
  • 3YOO K H,KIM J W.A novel configurable mems inertial switch using microscale liquid-mental dropletp[C].IEEE,2009:793-796. 被引量:1
  • 4YOO K H,PARK U,KIM J W.Development and characterization of a nover configurable MEMS inertial switch using a microscale liquid-mental droplet in a microstructured channel[J].Sensors and Actuators A,2011,166:234-240. 被引量:1
  • 5LIU T T,SU W,YANG T,et al..Evaluation of the threshold trimming method for micro inertial fluidic switch based on electrowetting technology[J].AIP Advances,2014,4:03712. 被引量:1
  • 6LIU T T,SU W,YANG T,et al..Vibration interference analysis and verification of micro-fluidic inertial switch[J].AIP Advances,2014,4:031313. 被引量:1
  • 7KIM J-W,KIM CH-J.Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics[C].IEEE,2002:479-482. 被引量:1
  • 8FENG Y Y,ZHOU ZH Y,YE X Y,et al..Passive valves based on hydrophobic microfluidics[J].Sensors and Actuators A,2003,108:138-143. 被引量:1
  • 9CHO H S,KIM H-Y,KANG J Y,et al..How the capillary burst microvalve works[J].Journal of Colloid and Interface Science,2007,306:379-385. 被引量:1
  • 10CHEN J M,HUANG P-C,LIN M-G.Analysis and experiment of capillary valves for microfluidics on a rotating disk[J].Microfluid Nanofluid,2008,4(5):427-437. 被引量:1

二级参考文献35

  • 1王毅,常小庆.微重力环境下推进剂贮箱中三维气液平衡界面的数值模拟[J].火箭推进,2007,33(3):31-35. 被引量:5
  • 2SIMON J, SAFFER S, KIM C J. A liquid-filled microrelay with a moving mercury microdrop [J]. Journal of Microelectromechanical Systems, 1997, 6 (3) : 208- 216. 被引量:1
  • 3KIM J, SHEN W J, KIM C J, et al. A micromechanical switch with elecrtostatically driven liquid-metal droplet [J]. Sensors and Actuators: A, 2002, 97/98: 672-679. 被引量:1
  • 4JIA M J, LI X X, SONG Z H, et al. Micro-cantilever shocking-acceleration switdh with threshold adjusting and on state latching functions [J]. Journal of Micromechanics and Microengineering, 2007, 17 (3): 567-575. 被引量:1
  • 5YOO K, PARK U, KIM J. Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel [J]. Sensors Actuators: A, 2009, 159 (1): 51- 57. 被引量:1
  • 6VOWELL S. Microfluidics: the effects of surface tension [EB/ OL]. (2009- 03- 19) [2010- 09- 21], http://www, phys. washington, edu/users/sharpe/486/vowell_f, pdf. 被引量:1
  • 7SHEN W, KIM J, KIM C J. Controlling the adhesion force by physical surface modification for electrostatic actuation of microscale mercury drop [C] // Proceedings of Micro Electro Mechanical Systems. Las Vegas, USA, 2002: 52- 55. 被引量:1
  • 8CHO H, KIM H Y, KANGJ Y, et. al. How the capillary burst microvalve works[J].Colloid and Interface Science, 2007, 306 (2): 379-385. 被引量:1
  • 9TORKKELI A. Droplet rnicrofluidics on a planar surface [D]. Espoo: VTT Publications, 2003. 被引量:1
  • 10DUCREE J, HAEBERLE S, LUTZ S, etal.. The centrifugal microfluidic Bio-Disk platform[J]. Mi- cromech. Microeng. , 2007,17 (7) :103-115. 被引量:1

共引文献14

同被引文献12

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部