期刊文献+

一类退缩反应扩散方程组的整体解的存在性与猝灭 被引量:1

Existence and Quenching of Global Solution for A Class of Degenerate Reaction Diffusion System
下载PDF
导出
摘要 分析了一类退缩反应扩散方程组的初边值问题,讨论了此方程组整体解存在的条件,证明了当区域Ω的直径适当小时,解是全局存在的;当Ω的直径适当大时,解会在有限时刻发生猝灭现象,得到了Ω直径的量化范围. In this paper, initial-boundary value problem of a class of degenerate reaction diffusion system was analyzed, and existence conditions of global solution of this system were discussed. It was proved that the global solutions exist while the diameter of region Ω is adequate small, yet the solutions would quench in a finite time while the diameter of Ω is adequate large. The range of diameter of Ω was obtained.
作者 孙仁斌
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2016年第1期141-144,共4页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(61374085)
关键词 退缩反应扩散方程组 整体解 有限猝灭时间 区域直径 degenerate reaction diffusion system global solution finite quenching time the diameter of region
  • 相关文献

参考文献16

  • 1Kawarada H.On solutions of initial-boundary value problem for ut=uxx+1/(1-u)[J].Publ Res Inst Math Sci,1975,10:729-736. 被引量:1
  • 2Guo J S.On the quenching behavior of the solution of a semilinear parabolic equation[J].J Math Anal Appl,1990,151:58-79. 被引量:1
  • 3Dai Q Y,Gu Y G.A short note on quenching phenomena for semilinear parabolic equations[J].J Differential Equations,1997,137:240-250. 被引量:1
  • 4Salin T.On quenching with logarithmic singularity[J].Nonlinear Analysis,2003,52:261-289. 被引量:1
  • 5Bertdch M,Ughi M.Positivity peoperties of viscosity solutions of a degenerate parabolic equation[J].Nonlinear Analysis,1990,14:571-592. 被引量:1
  • 6孙仁斌,胡军浩.含有对数奇异项的抛物方程解的整体存在性与猝灭性[J].江西师范大学学报(自然科学版),2006,30(4):307-310. 被引量:2
  • 7Pablo A,Quiros F,Rossi J D.Non-simultaneousquenching[J].Appl Math Lett,2002,15:265-269. 被引量:1
  • 8Ferreira R,Pablo A,Quiros F.Non-simultaneous quenching in a system of heat equations coupled at the boundary[J].Z Angew Math Phys,2006,57:586-594. 被引量:1
  • 9Zheng Sining,Wang Wei.Non-simultaneous versus simultaneous quenching in a coupled nonlinear parabolic system[J].Nonlinear Analysis,2008,69:2274-2285. 被引量:1
  • 10Winkler M.Quenching phenomena in strongly degenerate diffusion equations with strong absorption[J].J Math Anal Appl,2003,288:481-504. 被引量:1

二级参考文献24

  • 1Kawarada H.On solutions of initial-boundary value problem for ut = uxx + 1/(1-u)[J].Publ Res Inst Math Sci,1975,10:729-736. 被引量:1
  • 2Acker A,Walter W.On the global existence of solutions of parabolic differential equation with a singular nonlinear term[J].Nonlinear Analysis,1978,2:499-505. 被引量:1
  • 3Chan C Y,Kwong M K.Quenching phenomena for singular nonlinear parabolic equations[J].Nonlinear Analysis,1988,12:1 377-1 383. 被引量:1
  • 4Acker A,Kawohl B.Remarks on quenching[J].Nonlinear Analysis,1989,13:53-61. 被引量:1
  • 5Guo J S.On the quenching behavior of the solution of a semilinear parabolic equation[J].J Math Anal Appl,1990,151:58-79. 被引量:1
  • 6Dai Q Y,Gu Y G.A short note on quenching phenomena for semilinear parabolic equations[J].J Differential Equations,1997,137:240-250. 被引量:1
  • 7Salin T.On quenching with logarithmic singularity[J].Nonlinear Analisis,2003,52:261-289. 被引量:1
  • 8Pao C V.Nonlinear parabolic and elliptic equations[M].New York:Plenum Press,1992. 被引量:1
  • 9Deng K,Levine H A.On the blow-up of at quenching[J].Proc Amer Math Soc,1989,106:1 045-1 056. 被引量:1
  • 10Friedman A,Mcleod B.Blow-up of positive solutions of semilinear heat equations[J].Indiana Univ Math J,1985,34:425-447. 被引量:1

共引文献2

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部