期刊文献+

蚁群优化算法的理论研究进展 被引量:35

Advances in theoretical research of ant colony optimization
下载PDF
导出
摘要 蚁群优化算法的理论研究有助于更好地理解算法的原理以及指导算法应用。回顾了蚁群优化算法的收敛性分析、时间复杂度分析与近似性能分析等理论研究进展,分析了其理论研究的对象从简单的拟布尔函数转为组合优化问题以及实际应用问题。从蚁群算法理论分析方法和研究问题类型2个方面对蚁群算法的理论研究进行综述。介绍了适应值划分、漂移分析等最基本的数学分析工具,对时间复杂性及近似性能等重要问题进行了探讨。总结比较了蚁群算法求解各类问题的性能,指出这些研究能够更加深入了解蚁群算法的运行机制。最后,探讨了目前蚁群算法理论研究中亟待解决的问题,指出引入新的分析工具以及研究更为复杂的算法模型等是值得进一步研究的方向和内容。 Theoretical investigations of the ant colony optimization( ACO) algorithm can help to improve our understanding of the theoretical basis of the algorithm and guide its appropriate application. Theoretical research on ACO has included analyses of early convergence,time complexity,and approximation performance. Investigation objectives have ranged from simple Boolean functions,to combinatorial optimization and practical application problems,to the analysis of NP-hardness problems. In this paper,we survey state-of-the-art theoretical ACO research from two aspects: the most common mathematical techniques and those less common. In addition,we introduce two mathematical analysis tools,including fitness value partitioning and drift analysis,and discuss important ACO issues,including ACO runtime analysis and approximation performance. More specifically,we provide comparative results for ACO's performance in solving various problems. These studies provide a direction for better understanding the working principles of ACO. Finally,we highlight further research directions,including the introduction of new analytical tools and the study of more complicated algorithmic models.
出处 《智能系统学报》 CSCD 北大核心 2016年第1期27-36,共10页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61170081 61472143) 江西省自然科学基金资助项目(20151BAB217008)
关键词 蚁群优化算法 理论研究 组合优化 收敛性 时间复杂度 近似性能 ant colony optimization theoretical research combinatorial optimization convergence time complexi ty approximation performance
  • 相关文献

参考文献1

二级参考文献17

  • 1柯良军,冯祖仁,冯远静.有限级信息素蚁群算法[J].自动化学报,2006,32(2):296-303. 被引量:17
  • 2杨文国,郭田德.求解最小Steiner树的蚁群优化算法及其收敛性[J].应用数学学报,2006,29(2):352-361. 被引量:19
  • 3http://pics.psych.stlr.ac.uk/cgibin/PICS/New/pics.cgi 被引量:1
  • 4http://www.ics.uci.edu/mlearn/MLRepository.html 被引量:3
  • 5Dorigo M,Maniezzo V,Colorni A.Ant system:Optimization by a colony of cooperating agents.IEEE Transactions on Systems,Man and Cybernetics,1996,26(1):29-41 被引量:1
  • 6Dorigo M,Caro G D,Gambardella L M.Ant algorithms for discrete optimization.Artificial Life,1999,5(2):137-172 被引量:1
  • 7Dorigo M,Stutzle T.Ant Colony Optimization.Cambridge,MA:MIT Press,2004 被引量:1
  • 8Dorigo M,Gambardella L M.Ant colony system:A cooperative learning approach to the traveling salesman problem.IEEE Transactions on Evolutionary Computation,1997,1(1):53-66 被引量:1
  • 9Stutzle T,Hoos H H.MAX-MIN ant system.Future Generation Computer Systems,2000,16(8):889-914 被引量:1
  • 10Gutjahr W J.A generalized convergence result for the graphbased ant system metaheuristic.Department of Statistics and Decision Support Systems,University of Vienna,Austria:Technical Report 99-09,1999 被引量:1

共引文献71

同被引文献230

引证文献35

二级引证文献312

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部