期刊文献+

进化规划算法的时间复杂度分析 被引量:10

Time Complexity of Evolutionary Programming
下载PDF
导出
摘要 进化规划算法是求解连续优化问题的一类进化算法,是进化计算的一个重要分支.在进化规划算法的理论研究上,已有学者证明了其收敛性.然而,进化规划算法的时间复杂度分析是进化计算领域一大难题,目前相关的研究成果很少.基于吸收态Markov过程模型,以期望收敛时间作为研究进化规划算法时间复杂度的指标,提出了进化规划算法期望收敛时间的估算方法,并以此作为算法时间复杂度分析的理论依据.最后分析了Gauss变异进化规划算法的期望收敛时间,作为提出理论的应用举例. As a method of evolutionary computation, evolutionary programming(EP) algorithm is an evolutionary algorithm for continuous optimization problems. The convergence of EP has been proved, but there are few studies on the time complexity of EP, which is one of the hard problems in evolutionary computation. EP algorithm can be modeled as an absorbing Markov process because of its comparison selection. The item called average convergence time is used to propose a method to analyze the time complexity of EP algorithm based on absorbing Markov process model. The average convergence time can be calculated with the probability that the EP algorithm attains the optimal solution in the next iteration but not in the current iteration. A direct approach to estimate the convergence time is given as a theorem. Furthermore, the corollaries of the theorem indicate the way to estimate the hounds of the convergence time. The convergence time reveals how many iteration times the EP algorithm uses to converge to the optimal solution. Therefore, the proposed theorem and corollaries can be considered as the time complexity theory for the foundation of evolutionary programming. Finally, the average convergence time of Gauss-mutation evolutionary programming is analyzed as an application case study of the proposed theory.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第11期1850-1857,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60433020 10471045) 广东省自然科学基金项目(970472 000463 04020079 05011896) 广东省教育部产学研结合基金项目(2007B090400031)~~
关键词 进化计算 进化规划算法 时间复杂度 期望收敛时间 Gauss变异 evolutionary computation evolutionary programming algorithm time complexity average convergence time Gauss mutation
  • 相关文献

参考文献20

  • 1Fogel L J, Owens A J, Walsh M J. Artificial Intelligence through Simulated Evolution [M]. New York.. Wiley, 1996 被引量:1
  • 2Holland J H. Adaptation in Natural and Artificial Systems[M]. 2nd ed. Cambridge, MA: MIT Press, 1992 被引量:1
  • 3Rechenberg I. Evolutions Strategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution [M]. Stuttgart: Frommann-Holzboog, 1973 被引量:1
  • 4Fogel D B. Evolving Artificial Intelligence [D]. San Diego, CA: University of California, 1992 被引量:1
  • 5Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms [J]. IEEE Trans on Evolutionary Computation, 1999, 3(2) : 124-141 被引量:1
  • 6Maruo M H, Lopes H S, Delgado M R. Self-adapting evolutionary parameters: Encoding aspects for combinatorial optimization problems [G] //Raidl G R, Gottlieb J. Evolutionary Computation and Combinatorial Optimization, LNCS 3448. Berlin: Springer, 2005:155-166 被引量:1
  • 7Back T, Schwefel H P. An overview of evolutionary algorithms for parameter optimization [J]. Evolutionary Computation, 1993, 1(1): 1-23 被引量:1
  • 8Schwefel H P. Evolution and Optimum Seeking [M]. New York: Wiley, 1995 被引量:1
  • 9Yao X, Liu Y, Lin G. Evolutionary programming made faster [J]. IEEE Trans on Evolutionary Computation, 1999, 3(2) : 82-103 被引量:1
  • 10Lee C Y, Yao X. Evolutionary programming using mutations based on Levy probability distribution [J]. IEEE Trans on Evolutionary Computation, 2004, 8(5):1-13 被引量:1

二级参考文献50

  • 1雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 2柯良军,冯祖仁,冯远静.有限级信息素蚁群算法[J].自动化学报,2006,32(2):296-303. 被引量:17
  • 3杨文国,郭田德.求解最小Steiner树的蚁群优化算法及其收敛性[J].应用数学学报,2006,29(2):352-361. 被引量:19
  • 4Qi X F,IEEE Trans Neural Netw,1994年,5卷,1期,102页 被引量:1
  • 5陆大--,随机过程及其应用,1986年,38页 被引量:1
  • 6Choi C, Lee J. Chaotic local search algorithm. Artificial Life & Robotics,1998, 2(1): 41~47. 被引量:1
  • 7漆安慎 杜蝉英.免疫的非线性模型[M].上海:上海科技教育出版社,1999.. 被引量:2
  • 8Dasgupta D, Forrest S. Artificial immune systems in industrial applications. In: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IEEE Press, 1999. 257~267. 被引量:1
  • 9de Castro L N, Von Zuben F J. The clonal selection algorithm with engineering applications. In: Proceedings of GECCO'00, Workshop on Artificial Immune Systems and Their Applications, 2000. 36~37. 被引量:1
  • 10Kim J, Bentley P J. Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator. In: Proceedings of the 2001 Congress on Evolutionary Computation, 2001. 1244~1252. 被引量:1

共引文献138

同被引文献106

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部