期刊文献+

基于统计数据的微博表情符分析及其在情绪分析中的应用 被引量:4

Statistical analysis of emoticons and its application in emotion analysis
下载PDF
导出
摘要 表情符作为一种新兴的网络语言,受到了越来越多的微博用户的青睐。微博中出现的表情符形象直观地表达了博主的情绪,对情绪分析起着至关重要的作用。首先对大量中文微博中表情符的使用特点、分布情况和情绪表达特点进行了统计分析。然后,人工选取具有代表性且情感倾向明确的表情符作为六类基本情绪的种子表情符。根据目标表情符和六类情绪的种子表情符在微博文本中的共现情况,为其建立六维情绪向量,并将其应用于微博情绪分析。在两个数据集上的实验结果表明,本文建立的表情符情绪向量有效地提高了微博情绪识别的精度。 As a new network language,emoticons have earned the favor of an increasing number of Micro-blog users.Emoticons in micro-blogs vividly represent blogger's emotions.We first make a comprehensive analysis of emoticons in a large corpus of Chinese micro-blogs,including their usage,distribution and characteristics in emotion expression.Secondly,we manually select a list of emoticons that typically indicate six basic emotions as seeds.Based on the co-occurrence between a target emoticon and the seed emoticons in a large corpus,we establish six-dimensioned vectors for the target emoticon and apply them to emotion analysis.Experimental results on two data sets show that the emoticon vectors can effectively improve the precision of micro-blog emotion recognition.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第3期577-584,共8页 Computer Engineering & Science
基金 国家自然科学基金(61202132)
关键词 表情符 情绪向量 统计分析 情绪分析 emoticon emotion vectors statistical analysis emotion analysis
  • 相关文献

参考文献6

二级参考文献54

  • 1林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 2M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177. 被引量:1
  • 3Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135. 被引量:1
  • 4M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624. 被引量:1
  • 5H. Yu, V. Hatzivassiloglou. Towards Answering O- pinion Question: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences[C]// EMNLP'03 : 129-136. 被引量:1
  • 6Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques[C]//ACL'02: 79-86. 被引量:1
  • 7Bo Pang, Lillian Lee. A sentimental education: Senti- ment analysis using subjectivity summarization based on minimum cuts[C]//ACL'04: 271-278. 被引量:1
  • 8E. Riloff, J. Wiebe. 2003. Learning extraction pat-terns for subjective expressions[C]//EMNLP'03: 105- 112. 被引量:1
  • 9Glance, N. , M. Hurst, K. Nigam, et al. 2005. Deri- ving marketing intelligence from online discussion [C]//SIGKDD'05 : 419-428. 被引量:1
  • 10Wilson, T. , J. Wiebe, P. Hoffmann. 2005. Recog- nizing contextual polarity in phrase-level sentiment a- nalysis[C]//HLT-EMNLP'05 .. 347-354. 被引量:1

同被引文献40

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部