期刊文献+

表情符向量化算法 被引量:2

Emoticon Vectorization Algrorithm
下载PDF
导出
摘要 为了更加客观准确地判断微博的情感倾向,提出表情符向量化算法.首先,该算法将初始化表情符向量从随机产生改进为包含表情符语义信息的向量;然后,用随机产生的负向样本提高泛化能力.通过定性和定量分析可知:该算法能够保留表情符的语义信息;相对于忽略表情符的纯文本情感分析,在微博文本中融入表情符信息的微博情感分析能够提高微博情感分类的精度. In order to judge the emotional orientation of Weibo more objectively and accurately, an emoticonvectorization algorithm is proposed. Firstly, the initialization emoticon vector isimproved from random generation to a vector containing emoticon semantic information;Secondly, the randomly generated negative samples are used to improve the generalization performance. Through qualitative and quantitative analysis, the algorithm can preserve the semantic information of emoticons. Compared with the plain text sentiment analysis that ignores emoticons, sentiment analysis of Weibo incorporating emoticon information in Weibo text can improve the accuracy of Weibo sentiment classification.
作者 吴晨茜 陈锻生 WU Chenxi;CHEN Duansheng(College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China)
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2019年第3期399-404,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61370006) 福建省科技计划重点资助项目(2015H0025)
关键词 表情符 表情符向量 卷积神经网络 情感分析 微博 emoticon emoticon vector convolutional neural network sentiment analysis Weibo
  • 相关文献

参考文献7

二级参考文献43

  • 1宗丽,李菁.符号理论观照下的网络语言[J].江汉大学学报(人文科学版),2005,24(1):62-65. 被引量:12
  • 2唐师瑶.Q时代的交际想象——QQ表情符号的构形规律及功能初探[J].现代语文(下旬.语言研究),2006(8):82-83. 被引量:13
  • 3Jansen B J, Zhang M, Sobel K, Chowdury A. Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 2009, 60(11): 2169-2188. 被引量:1
  • 4Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. Journal of Computational Science, 2011, 2(1): 1-8. 被引量:1
  • 5Zhao J, Dong L, Wu J, Xu K. MoodLens: An emoticon- based sentiment analysis system for Chinese tweets. In Proc. the 18th KDD, Aug. 2012, pp.1528-1531. 被引量:1
  • 6Jiang L, Yu M, Zhou M, Liu X, Zhao T. Target-dependent Twitter sentiment classification. In Proc. the 49th ACL, Jun. 2011, pp.151-160. 被引量:1
  • 7Liu K L, Li W J, Guo M. Emoticon smoothed language models for Twitter sentiment analysis. In Proe. the 26th AAAI. Jul. 2012. 被引量:1
  • 8Bermingham A, Smeaton A F. Classifying sentiment in mi- croblogs: Is brevity an advantage? In Proc. the 19th ACM International Conference on Information and Knowledge Management, Oct. 2010, pp.1833-1836. 被引量:1
  • 9Kouloumpis E, Wilson T, Moore J. Twitter sentiment anal- ysis: The good the bad and the OMG! In Proc. the 5th ICWSM, Jul. 2011. 被引量:1
  • 10Barbosa L, Feng J. Robust sentiment detection on Twitter from biased and noisy data. In Proc. the 23rd International Conference on Computational Linguistics: Posters, Aug. 2010, pp.36-44. 被引量:1

共引文献70

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部