期刊文献+

视觉词袋和Gabor纹理融合的遥感图像检索 被引量:7

Remote Sensing Image Retrieval Based on the Fusion of Bo VW and Gabor Texture
下载PDF
导出
摘要 针对高分辨率的遥感图像,提出了一种视觉词袋和Gabor纹理融合的图像检索方法。遥感图像纹理信息丰富,局部关键点多,当图像存在较多相似纹理时,视觉词袋检索准确率下降。将视觉词袋和Gabor纹理融合在一起结合了局部特征和全局特征以及中层词袋和底层纹理的优点,可以改进遥感图像的描述方式。实验结果表明,通过合理地分配视觉词袋和Gabor纹理的权重,特征融合的检索性能与单一特征方法相比有较大提高,并优于传统的Gabor纹理和颜色矩融合方法。因此,视觉词袋和Gabor纹理融合在遥感图像检索领域是一种有效的方法。 A retrieval method based on the fusion of Bag of Visual Words (BoVW) and Gabor texture is presented for the high resolution remote sensing images. Remote sensing images have rich texture information and many local key points But when an image contains lots of similar texture, the retrieval precision of BoVW will be reduced. The fusion of BoVW and Gabor texture combines the advantages of local feature and global feature, mid-level feature and low-level texture to improve image description. Experiment results show that the presented fusion method is superior to the traditional fusion method using Gabor texture and color moments. Retrieval performance of the fused features method is improved compared with that using single feature, and the improved performance depended on the suitable fusion weights Experiment results indicate that the fused BoVW and Gabor texture is effective for high-resolution remote sensing image retrieval
出处 《光电工程》 CAS CSCD 北大核心 2016年第2期76-81,88,共7页 Opto-Electronic Engineering
基金 国家自然科学基金地区项目(41261091) 江西省教育厅科技项目(GJJ13482) 江西省教育厅项目(GJJ14542) 江西省青年科学基金(20142BAB217017)
关键词 遥感图像检索 视觉词袋 Gabor纹理 特征融合 remote sensing image retrieval BoVW Gabor texture feature fusion
  • 相关文献

参考文献10

  • 1Demir B, Bruzzone L. A Novel Active Learning Method in Relevance Feedback for Content-Based Remote Sensing Image Retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing(SOI96-2892), 2015, 53(9): 2323-2334. 被引量:1
  • 2Piedra-Fernandez J A, Ortega G, Wang J Z, et at. Fuzzy Content-Based Image Retrieval for Oceanic Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing(S0196-2892), 2014, 52(9): 5422-5431. 被引量:1
  • 3Aptoula E. Remote Sensing Image Retrieval with Global Morphological Texture Descriptors[J]. IEEE Transactions on Geoscience and Remote Sensing(SO 196-2892), 2013, 52(5): 3023-3034. 被引量:1
  • 4YAO Hongyu. LI Bicheng, CAO Wen. Remote sensing imagery retrieval based-on Gabor texture feature classification[C]// Proceedings of 7th International Conference on Signal Processing, Aug 31-Sept 4, 2004, 1: 733-736. 被引量:1
  • 5陆丽珍,刘仁义,刘南.一种融合颜色和纹理特征的遥感图像检索方法[J].中国图象图形学报(A辑),2004,9(3):328-333. 被引量:37
  • 6YANG Yi, Newsam Shawn. Geographic image retrieval using local invariant features[J]. IEEE Transactions on Geoscience and Remote Sensing(SOI96-2892), 2013, 51(2): 818-832. 被引量:1
  • 7杨进,刘建波,戴芹.一种改进包模型的遥感图像检索方法[J].武汉大学学报(信息科学版),2014,39(9):1109-1113. 被引量:4
  • 8David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 91-110. 被引量:1
  • 9Gondra I, Heistcrkamp D R. Content-based Image retrieval with the normalized information distance[J]. Computer Vision and Image Understanding(SI077-3142), 2008, 111(2): 219-228. 被引量:1
  • 10YANG Yi, Newsam Shawn. Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification[C]// Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, California, Nov 2-5, 2010: 270-279. 被引量:1

二级参考文献20

  • 1Niblack W, Jose S, Barber R, et al. The QBIC project:query images by content using color, texture and shape Proceeding of SPIE[C], San Joe, California, USA, 1993.1908:173-187. 被引量:1
  • 2Marques O, Furht B. MUSE: content-based image search and retrieval system using relevance feedback[J]. Multimedia Toolsand Applications, 2002, 17(4): 21-50. 被引量:1
  • 3Sheikholeslami G, Zhang Ai-dong. A multi-resolution contentbased retrieval approach for geographic images [J].Geolnformatica, 1999, 3(2): 109-139. 被引量:1
  • 4Kitamoto A, Takagi M. Retrieval of satellite cloud imagery based on subiective similarity[A]. In:Proceedings of the 9th Scandinavian Conference on Image Analysis (SCIA'95)[C],Uppsala, Sweden, 1995, 6:449-456. 被引量:1
  • 5Zhu Bin, Ramsey M, Hsinchun Chen. Creating a large-scale content-based airphoto image digital library[J]. IEEE Transactions on Image Processing, 2000, 9(1) : 163-167. 被引量:1
  • 6Jain Anil K, Farshid Farroknia. Unsupervised texture segmentation using Gabor filters[J]. Pattern Recognition. 1991 ,12(24) : 1167-1186. 被引量:1
  • 7Tan Kian 1.ee, Ooi Beng Chin, Yee Chia Yeow. An evaluation of color-spatial retrieval techniques for large image databases[J]. Multimedia Tools and Applications, 2001.14(1):55-78. 被引量:1
  • 8Molinier M, I.aaksonen J, Hame T. Detecting Man-made Structures and Changes in Satellite Im- agery with a Content-Based Information Retrieval System Built on Self-organizing Maps [J]. 1EEE Transactions on Geosciences and Remote Sensing, 2007, 45(4): 861-874. 被引量:1
  • 9Samal A, Bhatia S, Vadlamani P, et al. Searching Satellite Imagery with Integrated Measures [J]. Pattern Recognition, 2009,42(11) :2 502-2 513. 被引量:1
  • 10Shyu C R, Klarie M, Scott G J, et al. GeolRIS: Geospatial Information Retrieval and Indexing Sys- tem-content Mining, Semantics Modeling, and Complex Queries[J]. IEEE Transactions on Geo- sciences and Remote Sensing, 2007, 45(4) : 839 852. 被引量:1

共引文献39

同被引文献48

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部