期刊文献+

基于多时相遥感图像的人造目标变化检测算法 被引量:9

A Change Detection Algorithm for Man-made Objects Based on Multi-temporal Remote Sensing Images
下载PDF
导出
摘要 传统的像素级变化检测方法的检测性能受到以下因素的严重制约:图像辐射差异、配准误差和差异图像分类门限的选取,并且难以从检测信息中提取出关键的变化,本文针对遥感图像中人造目标的变化检测问题,提出了一种综合特征级和像素级的两步变化检测算法.首先将大幅多时相遥感图像分成一系列子图像对,采用有监督子图像对分类方法,提取人造目标变化的感兴趣区域,然后采用像素级变化检测算法对感兴趣区域进行变化检测,得到定量的检测结果.实验结果表明了该算法的可行性和有效性。 The detection accuracy of traditional pixel-level change detection algorithms is seriously influenced by radiometric difference, registration error and the determination of classification threshold for a different image, and it is difficult to differentiate the true changes of interest from various kinds of detected changes. Therefore, a novel two-step change detection algorithm combining feature-level and pixel-level techniques is proposed to detect changes of man-made objects in multi-temporal remote sensing images. Large-size images are divided into overlapping sub-images, and the changed regions containing man-made objects are extracted by supervised sub-image classification, Then, a pixel-level change detection algorithm is developed to obtain quantitative detection results. Experimental results demonstrate the feasibility and effectiveness of the proposed algorithm.
出处 《自动化学报》 EI CSCD 北大核心 2008年第9期1040-1046,共7页 Acta Automatica Sinica
基金 国家自然科学基金(60472028)资助~~
关键词 变化检测 人造目标 几何结构 HOG描述子 Gabor纹理 Change detection, man-made object, geometric structure, histogram of oriented gradient (HOG) descriptor, Gabor texture
  • 相关文献

参考文献16

  • 1Hazel G G. Object-level change detection in spectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 553-561. 被引量:1
  • 2Lu D. Change detection techniques. International Journal of Remote Sensing, 2004, 25(12): 2365-2401. 被引量:1
  • 3Dai X L, Khorram S. The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1566-1577. 被引量:1
  • 4Bruzzone L, Prieto D F. Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on GeoscJence and Remote Sensing, 2000, 38(3): 1171-1182. 被引量:1
  • 5Molinier M, La,uksonen J, Hame T. Detecting man-made structures and changes in satellite imagery with a content- based information retrieval system built on self-organizing maps. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 861-874. 被引量:1
  • 6Thonnessen U, Hofele G, Middelmann W. Change detection in satellite images. In: Proceedings of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition. Orlando, USA: SPIE, 2005. 197-207. 被引量:1
  • 7Paolo G, Fabio D A, Gianni L. Change detection of multitemporal SAR data in urban areas combining feature- based and pixel-based techniques. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2820-2827. 被引量:1
  • 8Sarkar S, Boyer K L. Quantitative measures of change based on feature organization: eigenvalues and eigenvectors. Computer Vision an Image Understanding, 1998, 71(1): 110-136. 被引量:1
  • 9Lacroix V, Idrissa M, Hincq A, Bruynseels H, Swartenbroekx O. Detecting urbanization changes using SPOT5. Pattern Recognition Letters, 2006, 27(4): 226-233. 被引量:1
  • 10Cao G, Yang X, Mao Z H. A two-stage level set evolution scheme for man-made objects detection in aerial images. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2005. 474-479. 被引量:1

同被引文献130

引证文献9

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部