期刊文献+

基于多特征的红外图像行人检测 被引量:4

Pedestrian detection in infrared images based on multi-features
下载PDF
导出
摘要 基于提高红外图像行人检测准确率的目的,提出了一种基于多特征的红外行人检测算法。首先提取训练样本的梯度方向直方图特征和强度自相似性特征,利用二者相结合得到联合特征训练支持向量机(SVM),之后利用滑动窗口法対整幅红外图像进行遍历,用训练好的SVM进行分类检测。在LSI Far Infrared Pedestrian Dataset数据库上实验证明,基于多特征的检测方法相较于单一特征的方法提高了红外行人检测的精度,降低了误检率和漏检率。 In order to improve the accuracy of pedestrian detection in infrared images, an infrared pedestrian detection method is proposed in this paper. Firstly extract train samples' Histogram of Oriented Gradients feature and Intensity Self-Similarity feature, combine these two features to train support vector machine (SVM), then use sliding window method to traverse an infrared image, the trained SVM is used to classification and detection. Experiments in LSI Far Infrared Pedestrian Dataset prove that based on multi-features method compared with based on single feature method improve infrared pedestrian detection accuracy, reduce the false positive rate and miss rate.
作者 胡庆新 王磊
出处 《电子设计工程》 2016年第4期182-185,189,共5页 Electronic Design Engineering
关键词 红外行人检测 梯度方向直方图 强度自相似特征 支持向量机 infrared pedestrian detection histogram of Oriented Gradients Intensity Self-Similarity Support Vector Machine
  • 相关文献

参考文献8

  • 1Dollar P,Wojek C,Schiele B,et al. Pedestrian detection:An evaluation of the state of the art[J]. Pattern Analysis and Ma- chine Intelligence,IEEE Transactions on,2012,34(4):743- 761. 被引量:1
  • 2高晶,孙继银,刘婧,吴昆.基于区域模糊阈值的前视红外目标识别[J].光学精密工程,2011,19(12):3056-3063. 被引量:9
  • 3杨阳,杨静宇.基于显著性分割的红外行人检测[J].南京理工大学学报,2013,37(2):251-256. 被引量:13
  • 4Li W,Zheng D,Zhao T,et al. An effective approach to pe- destrian detection in thermal imagery[C]//Natural Computati- on (ICNC),2012 Eighth International Conference on. IEEE, 2012:325-329. 被引量:1
  • 5Walk S,Majer N,Schindler K,et al. New features and insi- ghts for pedestrian detection[C]//Computer vision and pattern recognition(CVPR),2010 IEEE conference on. IEEE,2010: 1030-1037. 被引量:1
  • 6Dalai N,Triggs B. Histograms of oriented gradients for human detection [C]//Computer Vision and Pattern Recogni- tion,2005. CVPR 2005. IEEE Computer Society Conference on. IEEE ,2005,1:886-893. 被引量:1
  • 7Miron A, Besbes B, Rogozan A ,et al. Intensity self-similarity features for pedestrian detection in far-infrared images [C]//Intelligent Vehicles Symposium(IV),2012 IEEE. IEEE,2012: 1120-1125. 被引量:1
  • 8Olmeda D, Premehida C, Nunes U, et al. Pedestrian Classifi- cation and Detection in Far Infrared Images[J]. Integrated Computer-Aided Engineerlng, 2013 (20) :347-360. 被引量:1

二级参考文献30

共引文献20

同被引文献50

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部