期刊文献+

使用DBSCAN的FCM神经网络分类器 被引量:5

FCM Neural Network Classifier Using Density-Based Spatial Clustering of Applications with Noise
下载PDF
导出
摘要 针对浮动质心法(FCM)在实现过程采用的K-means算法不易发现任意形状簇及对离群点敏感等缺陷,提出使用具有噪声的基于密度的聚类算法(DBSCAN)改进FCM神经网络分类器的方法.DBSCAN将离群点看作无法处理的点,并能发现任意形状的簇,将分区空间中的染色点划分成若干个更准确的分区.此外,定义优化目标函数,并用粒子群优化算法优化神经网络的各个参数,获得最优的分类模型.在UCI数据库上的对比实验表明,改进后的FCM方法在分类精度、鲁棒性和运行时间方面均优于原有FCM. Arbitrary shape clusters are difficult to be found by the K-means algorithm adopted in the implementation of floating centroids method (FCM). Moreover, K-means algorithm is sensitive to outliers. Aiming at these problems, density-based spatial clustering of applications with noise (DBSCAN) algorithm is used to improve FCM neural network classifier in this paper. The outliers are considered as the points that can not be dealt with, and clusters of arbitrary shape can be found by DBSCAN algorithm. Thus, the color points in the partition space can be divided into several more accurate partitions. In addition, an optimization objective function is defined, and the particle swarm optimization algorithm is employed to optimize the parameters of the neural network to obtain an optimal classification model. Several commonly used datasets from UCI database are selected to conduct a comparative experiment. The experimental results show that the improved FCM method generates better performance on classification accuracy, robustness and running time than that of the original FCM method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第2期185-192,共8页 Pattern Recognition and Artificial Intelligence
基金 国家科技支撑计划项目(No.2012BAF12B07-3) 国家自然科学基金项目(No.81301298 61302128 61373054 61203105 61173078 61173079 61070130) 山东省自然科学基金项目(No.ZR2012FQ016 ZR2012FM010 ZR2011FZ001 ZR2011FL022 ZR2010FM047 ZR2010FQ028) 济南市青年科技明星计划项目(No.2013012)资助~~
关键词 神经网络 浮动质心法(FCM) 分区空间 具有噪声的基于密度的聚类算法(DBSCAN) Neural Network, Floating Centroids Method (FCM), Partition Space, Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
  • 相关文献

参考文献21

  • 1QUINLAN J R. Induction of Decision Trees. Machine Learning, 1986, l(1) : 81-106. 被引量:1
  • 2FRIEDMAN N, LINIAL M, NACHMAN I, et al. Using Bayesian Networks to Analyze Expression Data. Journal of Computational Bi- ology, 2000, 7(3/4) : 501-620. 被引量:1
  • 3WANG B X, JAPKOWICZ N. Boosting Support Vector Machines for Imbalanced Data Sets. Knowledge and Information Systems, 2010, 25(1) : 1-20. 被引量:1
  • 4KOKNAR-TEZEL S, LATECKI L J. Improving SVM Classification on Imbalanced Time Series Data Sets with Ghost Points. Knowledge and Information Systems, 2011,28( 1 ) : 1-23. 被引量:1
  • 5CRAVEN M W, SHAVL/K J W. Using Neural Networks for Data Mining. Future Generation Computer Systems, 1997, 13 ( 2/3 ) : 211-229. 被引量:1
  • 6BRIDLE J S. Probabilistic Interpretation of Feedforward Classifica- tion Network Outputs, with Relationships to Statistical Pattern Re- cognition//SOULII~ F F, HI~RAUT J, eds. Neurocomputing. Be- din, Germany: Springer, 1990:227-236. 被引量:1
  • 7DIETI'ERICH T G, BAKIRI G. Solving Multielass Learning Pro- blems via Error-Correcting Output Codes. Journal of Artificial Intel- ligence Research, 1995, 2 : 263-286. 被引量:1
  • 8WANG L, YANG B, CHEN Z, et al. A Novel Improvement of Neu- ral Network Classification Using Further Division of Partition Space [EB/OL]. [2014-06-28]. http:// www. softcomputing, net/ iwinac07 1. pdf. 被引量:1
  • 9YANG B, WANG L, CHEN Z X, et al. A Novel Classification Method Using the Combination of FDPS and Flexible Neural Tree. Neurocomputing, 2010, 73(4/5/6): 690-699. 被引量:1
  • 10HAN J W, KAMBER M, PEI J. Data Mining: Concepts and Tech- niques. 2nd Edition. San Francisco, USA: Morgan Kanfmann, 2006. 被引量:1

二级参考文献78

共引文献221

同被引文献69

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部