期刊文献+

门限分位数自回归模型的预测方法及应用 被引量:6

Forecasting Methods and Application with Threshold Quantile Autoregressive Model
原文传递
导出
摘要 金融经济系统预测是宏观经济管理的重要问题,系统中大多数变量具有非线性与异质性等特征,门限分位数自回归(TQAR)模型能够较好地揭示这一特征。本文研究TQAR模型的预测技术,给出其条件分位数预测和条件密度预测方法。数值模拟结果表明,与传统的门限均值自回归模型(TAR)和分位数自回归(QAR)模型相比,TQAR模型在预测的精度和准度方面更具优势。文章使用TQAR模型研究中国通货膨胀的非线性动态特征,并在此基础上预测通货膨胀的波动趋势。实证结果表明,TQAR模型不仅能够揭示通货膨胀的门限效应和异质效应,提供比TAR和QAR模型更高的预测精准度,而且能够通过条件密度预测曲线,细致刻画通货膨胀条件分布的位置、散布与形状等全景信息,从而为宏观经济政策的制定和调整提供科学合理的决策依据。 Forecasting with financial and economic system is an important issue in macro- economic management, and most of the variables in this system have nonlinear and heteroge- neous characteristics. Threshold quantile autoregressive (TQAR) model can better discover the characteristics exactly. We give forecasting methods with TQAR model, which include conditional quantile forecasting and conditional density forecasting. The numeric simulation results show that TQAR model is superior to threshold autoregressive model (TAR) and quantile autoregressive model (QAR) in terms of forecasting accuracy and precision. Finally, we apply TQAR model to reveal the nonlinear dynamic features of inflation in China, and forecast the fluctuation of it.
作者 康宁 荆科
出处 《数量经济技术经济研究》 CSSCI 北大核心 2016年第3期146-160,F0003,共16页 Journal of Quantitative & Technological Economics
基金 国家社科基金一般项目(15BJY008) 教育部人文社会科学研究规划基金项目(14YJA790015) 安徽省哲学社会科学规划基金项目(AHSKY2014D103) 安徽省经济学特色专业(2014tszy021) 安徽省名师工作室(2014msgzs153)的资助
关键词 门限自回归 分位数回归 条件概率 通货膨胀 Threshold Autoregressive Quantile Regression Conditional Probability Inflation
  • 相关文献

参考文献30

  • 1Banachewicz K.,Lucas A.,2008,Quantile Forecasting for Credit Risk Management Using Possibly Miss pecified Hidden Markov Models[J],Journal of Forecasting,27(7),566-586. 被引量:1
  • 2Boero G.,Marrocu E.,2004,The Performance of SETAR Models,A Regime Conditional Evaluation of Point,Interval and Density Forecasts[J],International Journal of Forecasting,20(2),305-320. 被引量:1
  • 3Cai Y.Z.,2010,Forecasting for Quantile Self-exciting Threshold Autoregressive Time Series Models[J],Biometrika,97(1),199-208. 被引量:1
  • 4Cai Y.Z.,Stander J.,Davies N.,2012,A New Bayesian Approach to Quantile Autoregressive Time Series Model Estimation and Forecasting[J],Journal of Time Series Analysis,33(4),684-698. 被引量:1
  • 5Cai Y.Z.,Stander J.,2008,Quantile Self-exciting Threshold Autoregressive Time Series Models[J],Journal of Time Series Analysis,29(1),186-202. 被引量:1
  • 6Caner M.,2002,A Note on Least Absolute Deviation Estimation of a Threshold Model[J],Econometric Theory,18(3),800-814. 被引量:1
  • 7Chan K.S.,Tong H.,1986.On Estimating Thresholds in Autoregressive Models[J],Journal of Time Series Analysis,7(3),179-190. 被引量:1
  • 8De Gooijer J.G.,De Bruin P.T.,1998,On Forecasting SETAR Processes[J],Statistics&Probability Letters,37(1),7-14. 被引量:1
  • 9Galvao A.F.,Montes-Rojas G.,Jose 0.,2011,Threshold Quantile Autoregressive Models[J],Journal of Time Series Analysis,32(3),253-267. 被引量:1
  • 10Gerlacha R.H.,Chen C.W.S.,Chan N.Y.C.,2011,Bayesian Time-varying Quantile Forecasting for Value-at-Risk in Financial Markets[J],Journal of Business&Economic Statistics,29(4),481-492. 被引量:1

二级参考文献95

共引文献127

同被引文献37

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部