期刊文献+

基于BIOME-BGC模型的长白落叶松林净初级生产力模拟参数敏感性 被引量:24

Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model
原文传递
导出
摘要 基于植被生理生态过程的模型包含较多参数,合理的参数取值能够极大地提高模型的模拟能力.参数敏感性分析可以全面分析模型参数对模拟结果的影响程度,在筛选模型敏感参数过程中起到重要作用.本研究以模拟吉林省汪清林业局长白落叶松林净初级生产力(NPP)为例,分析了BIOME-BGC模型的参数敏感性.首先利用样地实测NPP数据与模拟值进行对比分析,检验模型对长白落叶松林NPP的模拟能力;然后利用Morris法和EFAST法筛选出BIOME-BGC模型中对长白落叶松林NPP影响较大的敏感参数.在此基础上,通过EFAST法对所有筛选出的参数进行定量的敏感性分析,计算了敏感参数的全局敏感性指数、一阶敏感性指数和二阶敏感性指数.结果表明:BIOME-BGC模型能够较好地模拟研究区内长白落叶松林NPP的变化趋势;Morris法可以在样本量较少的情况下实现对BIOME-BGC模型敏感参数的筛选,而EFAST法可以定量分析BIOME-BGC模型中单个参数以及不同参数之间交互作用对模拟结果的影响程度;BIOME-BGC模型中对长白落叶松林NPP影响较大的敏感参数为新生茎与叶片的碳分配比和叶片碳氮比,且二者之间的交互作用明显大于其他参数之间的交互作用. Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a ease study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The resuhs showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' interaction effect.
出处 《应用生态学报》 CAS CSCD 北大核心 2016年第2期412-420,共9页 Chinese Journal of Applied Ecology
基金 国家自然科学基金项目(31270697)资助~~
关键词 BIOME-BGC 敏感性分析 Morris法 EFAST法 净初级生产力 BIOME-BGC sensitivity analysis Morris method EFAST method net primary productivity (NPP).
  • 相关文献

参考文献29

  • 1Duan Q, Schaake J, Andreassian V, et al. Model Pa- rameter Estimation Experiment (MOPEX) : An overview of science strategy and major results from the second and third workshops. Journal of Hydrology, 2006, 320: 317-319. 被引量:1
  • 2徐崇刚,胡远满,常禹,姜艳,李秀珍,布仁仓,贺红士.生态模型的灵敏度分析[J].应用生态学报,2004,15(6):1056-1062. 被引量:105
  • 3Morris MD. Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33 : 161-174. 被引量:1
  • 4Venables WN, Ripley BD. Modern Applied Statistics with S. Berlin, Germany- Springer Science & Business Media Press, 2002. 被引量:1
  • 5Sobol IM. Global sensitivity indices for nonlinear mathe- matical models and their Monte Carlo estimates. Mathe- matics and Computers in Simulation, 2001, 55: 271- 280. 被引量:1
  • 6Saltelli A, Tarantola S, Chan KP. A quantitative model- independent method for global sensitivity analysis of model output. Technometrics, 1999, 41:39-56. 被引量:1
  • 7Marino S, Hogue IB, Ray C J, et al. A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 2008, 254:178-196. 被引量:1
  • 8Tang Y, Reed P, Van Werkhoven K, et al. Advancing the identification and evaluation of distributed rainfall- runoff models using global sensitivity analysis. Water Re- sources Research, 2007, 43: l- 14. 被引量:1
  • 9黄清华,张万昌.SWAT模型参数敏感性分析及应用[J].干旱区地理,2010,33(1):8-15. 被引量:75
  • 10吴锦,余福水,陈仲新,陈晋.基于EPIC模型的冬小麦生长模拟参数全局敏感性分析[J].农业工程学报,2009,25(7):136-142. 被引量:51

二级参考文献161

共引文献282

同被引文献482

引证文献24

二级引证文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部