期刊文献+

盘式制动器NVH性能的时-频域耦合仿真方法 被引量:4

Coupling Simulation Method for Disc Brake NVH Performance Evaluation in Time-frequency Domain
下载PDF
导出
摘要 汽车制动时的NVH性能对于乘车舒适性和防治环境噪声污染具有重要意义。目前常规的仿真方法为复特征值(CEA)法,通常CEA法比实际测试出现的制动尖叫频率点更多,容易造成误判。为此,提出采用时-频域耦合动态仿真方法对盘式制动器的NVH性能进行分析。基于有限元平台ABAQUS,根据国际噪声测试标准SAE J 2521规定的工况,分别采用CEA法和时-频域耦合仿真方法,对制动器的非稳态响应进行了分析,得到了制动器的加速度-频率响应曲线以及制动尖叫的频率点;将时-频域耦合仿真及CEA仿真结果与测试结果进行比较,结果表明:传统的CEA仿真得到的的尖叫频率值过多,相比之下时-频域耦合仿真得到的结果与测试数据更为吻合,能够更精准地预测制动器的尖叫噪声频率值。 During car braking, NVH performance is of great significance for ride comfort and environmental noise prevention. Currently, the conventional simulation method is the complex eigenvalue analysis (CEA) method. But this method usually gets more squeal frequencies than the test results which may cause misjudgments. So, the coupling dynamic simulation method in the time-frequency domain was brought up to analyze the NVH performance of disc brakes. Based on the finite element platform of ABAQUS, and according to the international noise test standard SAE J2521, both the CEA method and the implicit-explicit coupling simulation method were adopted to analyze the unsteady response of a disc brake. And the acceleration-frequency response curve of the brake and the frequency sampling points of the braking squeal were obtained. Both results from implicit-explicit coupling simulation and CEA method were compared with the test results. Results show that the CEA can get more squeal frequencies than the test results, but the results from time-frequency domain coupling method are in good agreement with the test data, which can more accurately predict the frequency values of the brake squeal.
出处 《噪声与振动控制》 CSCD 2016年第1期53-56,共4页 Noise and Vibration Control
基金 国家自然科学基金资助项目(51375519) 重庆交通大学研究生教育创新基金(20130131)
关键词 振动与波 盘式制动器 NVH 时-频域耦合 CEA 制动尖叫 vibration and wave disc brake NVH time-frequency domain coupling CEA braking squeal
  • 相关文献

参考文献8

  • 1田志宇..钳盘式制动器制动噪声分析与控制[D].吉林大学,2008:
  • 2管迪华,杜永昌,王霄锋,李清.对一盘式制动器高频尖叫及抑制的分析[J].工程力学,2014,31(12):217-222. 被引量:17
  • 3吕辉,于德介.随机参数汽车盘式制动器的稳定性分析[J].振动工程学报,2014,27(5):647-653. 被引量:13
  • 4S W Kung, K B Dunlap, R S Ballinger. Complexeigenvalue analysis for reducing low frequency brakesqueal[J]. Soc. Automot. Eng., 2000, 109: 559-565. 被引量:1
  • 5H Ouyang, A Abubakar. Complex eigenvalue analysis anddynamic transient analysis in predicting disc brake squeal[J]. Int. J. Veh. Noise Vib., 2006, 2: 143-55. 被引量:1
  • 6Cantone F, Massi F. A numerical investigation into thesqueal instability: Effect of damping[J]. MechanicalSystems and Signal Processing, 2011, 25(5): 1727-37. 被引量:1
  • 7Blaschke P, Rumold W. Global NVH matrix for brakenoise- A Bosch proposal[J]. SAE Paper, 1999- 01- 3405.Proc. 17 th Annual brake colloquium & engineeringdisplay, 1999. 被引量:1
  • 8匡博..盘式制动器制动噪声有限元分析[D].湖南大学,2013:

二级参考文献17

  • 1Dai Y, Lim T C. Suppression of brake squeal noise applying finite element brake and pad model enhanced by spectral-based assurance criteria [J]. Applied A- coustics, 2008,69 (3) : 196-214. 被引量:1
  • 2Fritz G, Sinou J J, Duffal J, et al. Effects of damping on brake squeal coalescence patterns application on a finite element modal[J]. Mechanics Research Commu- nication,2007,34(2) :181-190. 被引量:1
  • 3Nack W V. Brake squeal analysis by finite elements [J]. International Journal of Vehicle Design, 2000,23 (3/4) :263-275. 被引量:1
  • 4Liu P, Zheng H, Cai C. Analysis of disc brake squeal using the complex eigenvalue method[J-]. Applied A- coustics, 2007,68 (6) : 603-615. 被引量:1
  • 5Oberst S, Lai J C S. Statistical analysis of brake squeal noise[J]. Journal of Sound and Vibration, 2011, 330 (12):2 978-2 994. 被引量:1
  • 6Sarrouy E, Dessombz O, Sinou J J. Piecewise polyno- mial chaos expansion with an application to brakesqueal of a linear brake system[J]. Journal of Sound and Vibration,2013,332(3/4) :577-594. 被引量:1
  • 7Myers R H, Montgmery D C, Anderson C M. Re- sponse surface methodology-process and product opti- mization using designed experiment[M]. New York: Wiley Publishers, 2009. 被引量:1
  • 8Junior M T, Gerges S N Y, Jordan R. Analysis of brake squeal noise using the finite element method[J]. Applied Acoustics, 2008,69 (2) : 147-162. 被引量:1
  • 9Papilla M. Accuracy of response surface approxima- tions for weight equations based on structural optimi- zation[D]. Gainesville : University of Florida, 2001. 被引量:1
  • 10Zhang H, Mullen R L, Muhanna R L. Interval Monte Carlo methods for structural reliability[J]. Structural Safety, 2010,32(3) :183-190. 被引量:1

共引文献25

同被引文献9

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部