期刊文献+

图上低频信号谱域变换中的边权重优化设计 被引量:1

Optimal Design of Edge Weights in Transforming Low-Frequency Graph Signals into the Spectral Domain
原文传递
导出
摘要 基于谱域变换的图上信号处理是网络化数据处理中的新兴理论.许多图上信号处理应用中假设图上信号的频谱以低频成分为主,而实际上图的边权重对于图上信号的频谱分布有重要影响,因此本文研究图的构造过程中的边权重设计问题.首先将其转化为最优化问题,并得到了最优边权重的解析式.进一步针对网络化数据处理中分布式计算的需求,提出了基于网络数据的分布式权重优化算法.仿真结果表明相比于传统的边权重构造方法,本文提出的算法能够使信号的能量更多地集中在图谱的低频部分. Graph signal processing focusing on spectral analysis is an emerging theory for in-network data processing and other applications. When transforming graph signals into the spectral domain, the edge weights of graphs play an important role. Here, we formulate the design of edge weights into an optimization problem, and obtain the closed-form expression of optimal weights. We further propose the distributed optimal weighting (DOW) algorithm, which allows nodes to calculate the optimal weights in-network. Simulation results show that, compared with conventional weight design methods, the DOW algorithm enable more energy of graph signals to be aggregated upon lower frequencies.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期679-687,共9页 Journal of Fudan University:Natural Science
基金 国家科技重大专项(2015ZX03001040)
关键词 图上信号处理 网络化数据处理 分布式最优化 拉普拉斯矩阵 graph signal processing in-network data processing distributed optimization Laplacian matrix
  • 相关文献

参考文献16

  • 1SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains [J]. IEEE Signal Processing Magazine, 2013,30(3) : 83-98. 被引量:1
  • 2SANDRYHAILA A, MOURA J M F. Discrete signal processing on graphs: Frequency analysis [J]. IEEE Transactions on Signal Processing, 2014,62(12) : 3042-3054. 被引量:1
  • 3SANDRYHAILA A, MOURA J M F. Discrete signal processing on graphs [J]. IEEE Transactions on Signal Processing, 2013,61(7) : 1644-1656. 被引量:1
  • 4ANIS A, GADDE A, ORTEGA A. Towards a sarnplig theorem for signals on arbitrary graph[C]//2014 IEEE International Conference on Aeoustics, Speech and Signal Processing(ICAP). Florence, Italy: IEEE Press, 2014: 3864-3868. 被引量:1
  • 5SHI X, FENG H, ZHAI M, et al. Infinite impulse response graph filters in wireless sensor networks [J]. IEEE Signal Processing Letters, 2015,22(8) : 1113-1117. 被引量:1
  • 6SHUMAN D I, VANDERGHEYNST P, FROSSARD P. Chebyshev polynomial approximation for distributed signal processing [C]//2011 International Conference on Distributed Computing in Sensor Systems and Workshops(DCOSS). Barcelona, Spain: IEEE Press, 2011: 1-8. 被引量:1
  • 7EGILMEZ H E, ORTEGA A. Spectral anomaly detection using graph-based filtering for wireless sensor networks[C] // 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy; IEEE Press, 2014.. 1085-1089. 被引量:1
  • 8DONG X, THANOU D, FROSSARD P, et al. Learning graphs from signal observations under smoothness prior [J]. arXiv preprint arXiv: 1406. 7842,2014. 被引量:1
  • 9LIU D, FLIERL M. Motion-adaptive transforms based on the laplacian of vertex-weighted graphs[C]// 2014 Data Compression Con{erence(DCC). Snowbird, UT, USA: IEEE Press, 2014: 53-62. 被引量:1
  • 10JALILI M. A graph weighting method for reducing consensus time in random geographical networks[C] //2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA). Perth, WA, Australia: IEEE Press, 2010: 317-322. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部