期刊文献+

短信网络的加权演化模型研究 被引量:3

Research on the Weighted Evolutionary Model of Short Message Networks
下载PDF
导出
摘要 通过对实际数据的分析,获得了短信网络的一些特点,包括:度分布和边权分布符合低头和重尾的幂律分布、平均点强度和点度不具有幂函数律的关联性等等。在此基础上,将用户间短信交互次数视为短信网络的边权,提出了一种加权短信网络演化模型,其中新节点加入采用加权局部优先连接机制,边权更新基于节点间亲密度及近期联系频繁度。仿真结果表明,该生成模型较好地符合了实际短信网络的统计特性。 By analyzing some factual data from short message service database, more features of short message networks (SMNs) are captured, including degree distribution as well as weight distribution demonstrating the behavior of power-law with droop-head and heavy-tail, average vertex weight with vertex degree without power-law behavior etc. And then, a weighted evolutionary model (WEM) is proposed for SMNs by taking the short message interactive times between users as weights. The proposed WEM adopts a weighted local priority mechanism for node growing and a weight updating scheme which is based on the familiarity and recent contact frequency between users. Simulation results show that WEM fits real SMNs pretty well.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第5期649-657,共9页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61101136) 中芬国际科技合作项目(2010DFB10570)
关键词 近期联系频繁度 短信网络 加权局部优先 边权更新 recent contact frequency SMS network weighted local priority weight updating
  • 相关文献

参考文献8

二级参考文献100

共引文献122

同被引文献33

  • 1吴晔,肖井华,吴智远,杨俊忠,马宝军.手机短信网络的生长过程研究[J].物理学报,2007,56(4):2037-2041. 被引量:27
  • 2Peng S C, Wang G J, Yu S. Modeling malware propa_oation in smartphone social networks[ C ]//12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2013), Australia, 2013. 被引量:1
  • 3Watts D J, Strogatz S H. Collective dynamics of small- world networks[J]. Nature, 1998, 393 : 440 -442. 被引量:1
  • 4Yang Bo, Liu Dayou, Liu Jiming. Discovering communities from social networks: methodologies and applications [ M ]/! Handbook of social network technologies and applications. US : Springer, 2010 : 331 - 346. 被引量:1
  • 5Charron C, Favier J, Li C. Social computing [ N ]. Forrester Big Idea, 2006 -02 - 13. 被引量:1
  • 6Kianmehr K, Alhajj R. Calling communities analysis and iden- tification using machine learning techniques [ J ]. Expert Sys- tems with Applications ,2009,36(3 ) :6218-6226. 被引量:1
  • 7Phithakkitnukoon S, Smoreda Z, Olivier P. Socio-geography of human mobility:a study using longitudinal mobile phone data [J]. PloS ONE,2012,7(6) :e39253. 被引量:1
  • 8Calabrese F, Pereira F C, Lorenzo G D, et al. The geography of taste: analyzing cell-phone mobility and social events [ J ]. Pervasive Computing,2010,6030:22-37. 被引量:1
  • 9Traag V A, Browet A, Calabrese F, et al. Social event detection in massive mobile phone data using probabilistic location inference [ C ]//Proc of IEEE third international conference on privacy, security, risk, trust and social computing. Boston : IEEE ,2011:625-628. 被引量:1
  • 10Quercia D, Lathia N, Calabrese F, et al. Recommending social events from mobile phone location data[ C ]//Proc of ICDM. Sydney :IEEE ,2010:971-976. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部