期刊文献+

一类树的SL谱刻画

First-class tree charactered by its signless Laplacian spectrum
下载PDF
导出
摘要 图的谱理论是图论与组合矩阵论的一个重要研究领域。设图G是一个有n个顶点、m条边的简单图,Q(G)为图G的无符号拉普拉斯矩阵,树图是图论研究的一类重要的图,为了确定一类树的SL谱惟一性,利用图与同谱图之间的关系,运用删边缩边原理,探讨了两组顶点数目的树图。通过比较两组图中子树数目的大小逐项排除和删边删点的方法证明了一类树的SL谱惟一性。 The specrrum theory of graphs is an important area of investigation in the graph theory and Combinatorial matrix theory. Graph G is set as a simple graph with n top points and m edges, and Q(G) as its signless Laplacian (SL) matrix. In this paper, the relation between graphs and its cospectral graph is adopted to confirm the uniqueness of SL spectrum of the first-class tree. The tree graphs with two type numbers were investigated on the basis of comparison of two type graphs.
机构地区 青海大学基础部
出处 《现代电子技术》 2012年第18期71-72,76,共3页 Modern Electronics Technique
基金 基于超图理论的复杂网络模型构建及性质研究(61164005)
关键词 树图 图谱 SL谱 SL矩阵 tree graph graph specrrum SL spectrum SL matrix
  • 相关文献

参考文献6

  • 1BONDY J, MURTY U. Graph theory with application [M]. New York.. Aeademiee Press, 1976. 被引量:1
  • 2CVETKOVIC D M, DOOB M, SACHS H. Spectra of graphs [M]. New York: Academiee Press, 1980. 被引量:1
  • 3VAN DAM E R, HAEMERS W H. Which graphs are de- termined by their spectrum? [J]. Linear Algebra Appl. , 2003 (1).. 241-272. 被引量:1
  • 4CVETKOVIC D. Singless Laplacian and line graphs [J]. Bull. Acad. SerbeSci. Arts, CI. Sci. Math, 2005, 131 (30).. 85-92. 被引量:1
  • 5OMIDI G R. On a singless Laplacian spectram characterza- tion of T-shapetrees [J]. Linear Algebra Appl., 2009, 431: 1607-1615. 被引量:1
  • 6赵晓颖,张先迪.图和线图的邻接谱及拉普拉斯谱的关系[J].现代电子技术,2008,31(10):123-124. 被引量:2

二级参考文献6

  • 1Merris R. Laplacian Matrices of Graphs: A Survey[J]. Linear Algebra Appl. ,1998:143 - 176. 被引量:1
  • 2Cvetkovic D,Doob M,Sachs H. Spectra of Graphs[M]. Theory and Appl. , Academic Press, New York, 1980. 被引量:1
  • 3Shi Lingsheng. The Spectral Radii of a Graph and Its Line Graph[J]. Linear Algebra Appl. , 2006 : 58 - 66. 被引量:1
  • 4Nordhaus E A, Gaddum J M. On Complementary Graphs [J]. Amer. Math. Monthly, 1956,63 :175 - 177. 被引量:1
  • 5Shi Lingsheng. Bounds on the (Laplacian) Spectral Radius of Graphs[J]. Linear Algebra Appl. ,2007:755 - 770. 被引量:1
  • 6Li Jongsheng, Pan Yongliang. de Cane's. Inequality and Bounds on the Largest Laplacian Eigenvalue of a Graph [J]. Linear Algebra Appl. 2001 : 153 - 160. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部