期刊文献+

基于中点密度函数的模糊聚类算法 被引量:6

Fuzzy clustering algorithm based on midpoint density function
下载PDF
导出
摘要 针对传统模糊C-均值(FCM)聚类算法初始聚类中心不确定,且需要人为预先设定聚类类别数,从而导致结果不准确的问题,提出了一种基于中点密度函数的模糊聚类算法。首先,结合逐步回归思想作为初始聚类中心选取的方法,避免收敛结果陷入局部循环;其次,确定可能的聚类类别数目;最后,对结果进行重叠度和分离度的模糊聚类有效性指标判定,确定最佳的聚类类别数。实验证明该算法与原改进C-均值聚类算法相比,减少了迭代次数,平均准确率提高了12%。实验结果表明该算法能够减少聚类的处理时间,并在平均准确率和聚类性能指标上优于对比算法。 In the traditional Fuzzy C-Means( FCM) clustering algorithm, the initial clustering center is uncertain and the number of clusters should be preset in advance which may lead to inaccurate results. The fuzzy clustering algorithm based on midpoint density function was put forward. Firstly, the stepwise regression thought was integrated as the initial clustering center selection method to avoid convergence from local circulation, and then the number of clusters was determined, finally according to the results, the validity index of fuzzy clustering including overlap degree and resolution was judged to determin the optimal number of clusters. The results prove that, compared with the traditional improved FCM, the proposed algorithm reduces the number of iterations and increases the average accuracy by 12%. The experimental results show that the proposed algorithm can reduce the processing time of clustering, and it is better than the comparison algorithm on the average accuracy and the clustering performance index.
出处 《计算机应用》 CSCD 北大核心 2016年第1期150-153,170,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61202100)~~
关键词 模糊C-均值 中点法 类集密度函数法 逐步回归思想 有效性指标 Fuzzy C-Means(FCM) midpoint method class set density function method stepwise regression thought validity index
  • 相关文献

参考文献14

  • 1LEI Z, LI R. Designing of classifiers based on immune principles and fuzzy rules [J]. Information sciences, 2008, 178(7): 1836-1847. 被引量:1
  • 2JOHN V, MITA S, LIU Z, et al. Pedestrian detection in thermal images using adaptive fuzzy C-means clustering and convolutional neural networks [C]// Proceedings of the 2015 14th IAPR International Conference on Machine Vision Applications. Piscataway, NJ: IEEE, 2015: 246-249. 被引量:1
  • 3MAJI P, PAUL S. Rough-fuzzy clustering for grouping functionally similar genes from microarray data [J]. IEEE/ACM transactions on computational biology and bioinformatics, 2013, 10(2): 286-299. 被引量:1
  • 4FU S, LIU Z, SUN G, et al. Study on security risk assessment for information system based on fuzzy set and entropy theory [J]. Journal of software engineering, 2015, 9(4): 818-827. 被引量:1
  • 5武小红,周建江.可能性模糊C-均值聚类新算法[J].电子学报,2008,36(10):1996-2000. 被引量:34
  • 6DE CARVALHO F A T. Fuzzy C-means clustering methods for symbolic interval data [J]. Pattern recognition letters, 2007, 28(4): 423-437. 被引量:1
  • 7姚婧,何聚厚.基于模糊聚类分析的云计算负载平衡策略[J].计算机应用,2012,32(1):213-217. 被引量:26
  • 8RIBEIRO A, GIANNAKIS G B. Bandwidth-constrained distributed estimation for wireless sensor networks—part II: unknown probability density function [J]. IEEE transactions on signal processing, 2006, 54(7): 2784-2796. 被引量:1
  • 9LIAO X, LI Q, YANG X, et al. Multiobjective optimization for crash safety design of vehicles using stepwise regression model [J]. Structural and multidisciplinary optimization, 2008, 35(6): 561-569. 被引量:1
  • 10PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy C-means clustering algorithm [J]. IEEE transactions on fuzzy systems, 2005, 13(4): 517-530. 被引量:1

二级参考文献31

  • 1李冬梅,施海虎.负载平衡调度问题的一般模型研究[J].计算机工程与应用,2007,43(8):121-125. 被引量:15
  • 2J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms [ M].New York:Plenum Press, 1981. 被引量:1
  • 3J C Bezdek, J Keller, R Krisnapuram, N R Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [ M]. Kluwer Academic, 1999. 被引量:1
  • 4R Krishnapuram, J Keller. A possibilistic approach to clustering [J].IEEE Trans Fuzzy Systems, 1993,1 ( 2 ) : 98 - 110. 被引量:1
  • 5M Bami, V Cappellini, A Mecocci. Comments on "A possibilistic approach to clustering" [ J ]. IEEE Trans Fuzzy Systems, 1996,4(3):393 - 396. 被引量:1
  • 6N R Pal, K Pal, J C Bezdek. A possibilistic fuzzy c-means clustering algorithm [J].IEEE Trans Fuzzy Systems,2005,13(4) :517 - 530. 被引量:1
  • 7Pal N R,Pal K, Bezdek J C.A new hybrid C-means clustering model [A ]. In Proceedings of the IEEE International Conference On Fuzzy Systems [C]. Piscataway: IEEE Press, 2004. 179 - 184. 被引量:1
  • 8Krishnapuram R, Keller J. The possibilisfic c-means algorithm: Insights and Recommendations [J].IEEE Transaction Fuzzy Systems, 1996,4(3) :385 - 393. 被引量:1
  • 9Wu Xiao-hong, Zhou Jian-jiang. Allied fuzzy c-means clustering model [ J ]. Transaction of Nanjing University of Aeronautics and Aslronautics, 2006,23 (3) :208 - 213. 被引量:1
  • 10M S Yang, K L Wu. unsupervised possibilistic clustering [ J ]. Pattern Recognition, 2006,39 (1) :5 - 21. 被引量:1

共引文献64

同被引文献55

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部