期刊文献+

基于FCM的无监督最优模糊聚类算法 被引量:2

Unsupervised optimal fuzzy clustering algorithm based on fuzzy c-means
下载PDF
导出
摘要 基于模糊c-均值算法的无监督最优模糊聚类算法集合了模糊c均值算法与无监督最优聚类算法的优点,它通过逐渐改变聚类数c,依据一些有效性衡量尺度,能无监督搜索出最优聚类数c。通过对距离测量尺度的改进,使聚类不受类形状的影响,以达到具备更高准确率的聚类效果。仿真实验结果表明,新算法不仅能准确找出聚类数,而且跟单纯的模糊c均值算法比,具有更好的聚类效果。 The unsupervised optimal fuzzy clustering algorithm based on the fuzzy c-means algorithm gathered the advantages of the fuzzy c-means algorithm and the unsupervised optimal Clustering algorithm. By changing the number of the clustering c gradually, basing on some measures of the effectiveness, the optimal clustering can be found out without supervising. By improving the measurement of the distance, the clustering can not be influenced by the shape of the class, in order to achieve a higher rate of correct clustering results. The simulation result showed that the new algorithm can not only find out the number of the clustering, but also has a better clustering effect compared to the fuzzy c-means algorithm.
出处 《信息技术》 2009年第7期69-71,共3页 Information Technology
关键词 模糊C均值算法 聚类有效性 无监督最优聚类 fuzzy c-means algorithm cluster validity unsupervised optimal clustering
  • 相关文献

参考文献3

二级参考文献13

  • 1刘笛,朱学峰,苏彩红.一种新型的模糊C均值聚类初始化方法[J].计算机仿真,2004,21(11):148-151. 被引量:19
  • 2J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms [ M].New York:Plenum Press, 1981. 被引量:1
  • 3J C Bezdek, J Keller, R Krisnapuram, N R Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [ M]. Kluwer Academic, 1999. 被引量:1
  • 4R Krishnapuram, J Keller. A possibilistic approach to clustering [J].IEEE Trans Fuzzy Systems, 1993,1 ( 2 ) : 98 - 110. 被引量:1
  • 5M Bami, V Cappellini, A Mecocci. Comments on "A possibilistic approach to clustering" [ J ]. IEEE Trans Fuzzy Systems, 1996,4(3):393 - 396. 被引量:1
  • 6N R Pal, K Pal, J C Bezdek. A possibilistic fuzzy c-means clustering algorithm [J].IEEE Trans Fuzzy Systems,2005,13(4) :517 - 530. 被引量:1
  • 7Pal N R,Pal K, Bezdek J C.A new hybrid C-means clustering model [A ]. In Proceedings of the IEEE International Conference On Fuzzy Systems [C]. Piscataway: IEEE Press, 2004. 179 - 184. 被引量:1
  • 8Krishnapuram R, Keller J. The possibilisfic c-means algorithm: Insights and Recommendations [J].IEEE Transaction Fuzzy Systems, 1996,4(3) :385 - 393. 被引量:1
  • 9Wu Xiao-hong, Zhou Jian-jiang. Allied fuzzy c-means clustering model [ J ]. Transaction of Nanjing University of Aeronautics and Aslronautics, 2006,23 (3) :208 - 213. 被引量:1
  • 10M S Yang, K L Wu. unsupervised possibilistic clustering [ J ]. Pattern Recognition, 2006,39 (1) :5 - 21. 被引量:1

共引文献38

同被引文献13

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 3钱线,黄萱菁,吴立德.初始化K-means的谱方法[J].自动化学报,2007,33(4):342-346. 被引量:32
  • 4ROSE K, GUREWITZ E, FOX G C. Constrained clustering as optimization method [J]. IEEE Trans. on Pattern Analysis and Ma-chine Intelligence,1993,15(8):785-794. 被引量:1
  • 5BUCKLES B P, PETRY F E,PRABBU D,et al. Fuzzy clustering with genetic search[C]//Proc IEEE Conf Evol Comput Proc ICEC. Piscataway : IEEE Press, 1994:46-50. 被引量:1
  • 6WANG X Z,WANG Y D, WANG L J. Improving fuzzy C-means clustering based on feature-weight learning[J]. Pattern Recognition Letters,2004,25 (10) : 1123-1132. 被引量:1
  • 7Tran L,Duckstein L.Comparison of fuzzy numbers using a fuzzy distance measure[J].Fuzzy Sets and Systems,2002,130:331-341. 被引量:1
  • 8Xu Rui,Wtmsch D.Survey of clustering algorithms[J].IEEE Transactions on Neural Networks,2005,16(3):645-678. 被引量:1
  • 9De Carvalho,De Francisco A T.A fuzzy clustering algorithm for symbolic interval data based on a single adaptive Eucfidean distance[C] //13th International Conference on Neural Informarion Processing,2006:1012-1021. 被引量:1
  • 10武小红,周建江.可能性模糊C-均值聚类新算法[J].电子学报,2008,36(10):1996-2000. 被引量:34

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部