期刊文献+

基于数据流模型的模糊聚类 被引量:1

Fuzzy clustering algorithm for data stream
下载PDF
导出
摘要 模糊聚类是数据挖掘中一个重要聚类算法。当前,基于数据流模型的聚类算法已有了广泛的研究,但这些算法均为硬聚类,尚未见数据流上进行模糊聚类的文献。提出一种针对数据流模型的加权模糊聚类算法,基于真实数据集合和人工数据集的实验表明该算法比传统的模糊聚类算法具有更好的聚类性能。 FCM is an important clustering algorithm,Though already lots of clustering algorithms for data stream have been presented,they all belong to hard clustering.There are not fuzzy clustering algorithms on data sets till now.Fuzzy clustering algorithm is presently not used.A weighted fuzzy algorithm for clustering data stream is brought forward.Empirical evidence of this algorithm's superiority over the common FCM algorithms on the real data sets and the synthetic data sets is given.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第33期124-126,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60672026~~
关键词 数据流 模糊C-均值 聚类 加权模糊C-均值 data stream fuzzy C-means cluster weighted fuzzy C-means
  • 相关文献

参考文献15

  • 1Kantardzic M.数据挖掘[M].北京:清华大学出版社,2003-08. 被引量:2
  • 2Aggarwal C C,Hun J,Wang J,et al.A framework for clustering evolving data stream[C] //Proc of Int Conf on Very Large Data Bases (VLDB'03),2003:81-92. 被引量:1
  • 3Aggarwal C C,Han J,Wang J,et al.A framework for clustering evolving data stream[C] //Proc of Int Conf on Very Large Data Bases(VLDB'03),2003:81-92. 被引量:1
  • 4Aggarwal C C,Hun J,Wang J,et al.A framework for projected clustering of high dimensional data stream[C] //Toronto,Canada:Proc of Int Conf on Very Large Data Bases(VLDB'04),2004:852-863. 被引量:1
  • 5Aggarwal C C,Hun J,Wang J,et al.A framework for projected clustering of high dimensional data stream[C] //Proc of Int Conf on Very Large Data Bases(VLDB'04),Toronto,Canada,2004:852-863. 被引量:1
  • 6O'Callaghan L,Mishra N,Meyerson A,et al.Streaming data algorithms for high-quality clustering[C] //Proc of the 18th Int'l Conf on Data Engineering,Sun Jose,2002:685-694. 被引量:1
  • 7Hall L O,Beusaid A M,Clarke L P,et al.A comparison of henral network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain[J].IEEE Transactions on Neural Networks,1992,3(5):672-682. 被引量:1
  • 8Cannon R L,Dave J V,Bezdek J C.Efficient implementation of the fuzzy C-means clustering algorithms[J] ,IEEE Trans on Pattern Anal Machine Intelligence,1986,8(2):248-255. 被引量:1
  • 9Pal S K,Majumdar D.Fuzzy mathematical approach to pattern recognition[M].New York:Halstexl Pr,1986. 被引量:1
  • 10Wu K,Yung M.Alternative C-meaus clustering algorithms[J].Pattern Recognition,2002,35:2267-2278. 被引量:1

二级参考文献72

  • 1J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms [ M].New York:Plenum Press, 1981. 被引量:1
  • 2J C Bezdek, J Keller, R Krisnapuram, N R Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [ M]. Kluwer Academic, 1999. 被引量:1
  • 3R Krishnapuram, J Keller. A possibilistic approach to clustering [J].IEEE Trans Fuzzy Systems, 1993,1 ( 2 ) : 98 - 110. 被引量:1
  • 4M Bami, V Cappellini, A Mecocci. Comments on "A possibilistic approach to clustering" [ J ]. IEEE Trans Fuzzy Systems, 1996,4(3):393 - 396. 被引量:1
  • 5N R Pal, K Pal, J C Bezdek. A possibilistic fuzzy c-means clustering algorithm [J].IEEE Trans Fuzzy Systems,2005,13(4) :517 - 530. 被引量:1
  • 6Pal N R,Pal K, Bezdek J C.A new hybrid C-means clustering model [A ]. In Proceedings of the IEEE International Conference On Fuzzy Systems [C]. Piscataway: IEEE Press, 2004. 179 - 184. 被引量:1
  • 7Krishnapuram R, Keller J. The possibilisfic c-means algorithm: Insights and Recommendations [J].IEEE Transaction Fuzzy Systems, 1996,4(3) :385 - 393. 被引量:1
  • 8Wu Xiao-hong, Zhou Jian-jiang. Allied fuzzy c-means clustering model [ J ]. Transaction of Nanjing University of Aeronautics and Aslronautics, 2006,23 (3) :208 - 213. 被引量:1
  • 9M S Yang, K L Wu. unsupervised possibilistic clustering [ J ]. Pattern Recognition, 2006,39 (1) :5 - 21. 被引量:1
  • 10Y Fukuyama,M Sugeno.A new method of choosing the number of clusters for the fuzzy c-means method [A]. In Proc. of the 5th Fuzzy Systems Symposium [ C]. Japan: IEEE Press, 1989.247 - 250. 被引量:1

共引文献195

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部