期刊文献+

基于可变阶变分模型的医用低剂量CT图像去噪 被引量:7

Medical low-dose CT image denoising based on variable order variational model
下载PDF
导出
摘要 为了降低患者的辐射风险,低剂量CT(LDCT)广泛用于临床诊断,但辐射剂量的减少在重建的LDCT图像中引入了斑点噪声和条纹伪影。为了提高LDCT图像的质量,提出了一种基于可变阶变分模型的后处理技术。所提出的变分模型使用边缘指示器控制变分阶数,根据图像的特征在一阶全变分(TV)正则项和二阶有界Hessian(BH)正则项之间交替变换。采用基于快速傅里叶变换(FFT)的分裂Bregman算法求解所提出的变分模型。该模型在保留高剂量CT (HDCT)图像相应结构的同时,有效抑制了斑点噪声和条纹伪影。重建的图像和实验数据表明,所提出的变分模型比现有的先进模型具有更好的质量。 Low-dose CT( LDCT) is widely used for clinical diagnosis to reduce radiation risk to patients.However,the radiation dose reduction introduces mottle noise and streak artifacts into the reconstructed LDCT images. In this paper,a post-processing technique is proposed based on variable order variational model to improve the LDCT image quality. The proposed variational model employs the edge indicator to control the order of variation,which can alternate between the first order total variation( TV) regularizer and second order bounded Hessian( BH) regularizer based on the image feature. Moreover,the proposed model is solved by split Bregman algorithm based on fast Fourier transform( FFT). The proposed model effectively suppresses mottle noise and streak artifacts,meanwhile preserving structure in reference to high-dose CT( HDCT) images. The reconstructed images and experimental data indicate that the proposed model has better quality than some existing state-of-the-art models.
作者 王娜 张权 刘祎 贾丽娜 桂志国 WANG Na;ZHANG Quan;LIU Yi;JIA Lina;GUI Zhiguo(Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data,North University of China,Taiyuan 030051,China;School of Information and Communication Engineering,North University of China,Taiyuan 030051,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第9期1757-1764,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61671413,61801438) 国家重大科学仪器设备开发专项(2014YQ24044508) 山西省归国学者基金(2016-085)~~
关键词 低剂量CT (LDCT) 图像降噪 边缘指示器 全变分(TV) 有界Hessian(BH) 快速傅里叶变换(FFT) 分裂Bregman算法 low-dose CT(LDCT) image denoising edge indicator total variation(TV) bounded Hessian(BH) fast Fourier transform(FFT) split Bregman algorithm
  • 相关文献

参考文献1

二级参考文献7

共引文献18

同被引文献77

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部