期刊文献+

基于导重法结合小波分析的连续体结构拓扑优化 被引量:1

Topology optimization of continuum structure based on guide-weight method combined with wavelet analysis
下载PDF
导出
摘要 利用导重法求解连续体结构拓扑优化问题,会出现多孔材料、棋盘格等数值不稳定现象,这种现象导致计算结果的可制造性差.将小波分析引入到导重法中,利用小波的多尺度分析的特点,去除设计变量场中的高频噪声,从而获得清晰的、可制造的拓扑结构.通过单工况和多工况两个典型算例进行分析和比较,结果显示出小波分析在消除数值不稳定现象中的高效性. The phenomenon of numerical instability,such as porous materials and check-boards will take place when the problem of topology optimization of continuum structure is solved with guide-weight method and this phenomenon will lead to a poor manufacturability of the computation result.By means of introducing wavelet analysis into the guide-weight and taking the advantage method of the feature of wavelet multi-scale analysis,the high-frequency noise in the field of design variables is eliminated and a clear and manufacturable topologic structure is obtained thereby.Two typical examples with single load and multiple loads are analyzed and compared with each other and the result shows that the wavelet analysis is of high efficiency for elimination of numerical instability.
出处 《兰州理工大学学报》 CAS 北大核心 2015年第6期37-42,共6页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(51265025)
关键词 数值不稳定 小波分析 多尺度分析 导重法 numerical instability wavelet analysis multi-scale analysis guide-weight method
  • 相关文献

参考文献4

二级参考文献50

共引文献56

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部