期刊文献+

基于人工材料密度的新型拓扑优化理论和算法研究 被引量:63

NEW THEORY AND ALGORITHM RESEARCH ABOUT TOPOLOGY OPTIMIZATION BASED ON ARTIFICIAL MATERIAL DENSITY
下载PDF
导出
摘要 对基于人工材料密度的拓扑优化理论作了深入分析;推导出了一种基于人工材料密度的拓扑优化准则算法,将该算法应用于拓扑优化的计算中,并给出了基于人工材料密度的拓扑优化迭代分析流程;提出了一种卷积因子方法,用于消除拓扑优化计算结果中易出现的棋盘格式和多孔材料现象;通过数值计算验证了理论和算法的有效性;分析讨论了不同优化参数对拓扑优化计算结果的影响。 The topology theory based on artificial material density is deeply analyzed. For solving the topology optimization problems, a new optimization criteria based on artificial material density is deduced and used in the topology optimization. At the same time, an iteration procedure of topology optimization based on artifical material density is presented. A convolution integral factor method is introduced to eliminate the checkboard pattern and porous material in the topology optimization. The theory and algorithm are realized and verified with a numerical calculation, and the effect of different parameters to the topology optimization results is also discussed.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2004年第12期31-37,共7页 Journal of Mechanical Engineering
基金 国家重点基础研究发展规划项目(2003CB716207)国家863计划(2003AA001031)资助项目。
关键词 人工材料密度 拓扑优化优化准则卷积因子法数值计算 <Keyword>Artificial material density Topology optimization Optimization criteria Convolution integral factor method Numerical calculation
  • 相关文献

参考文献17

  • 1余俊,周济.优化方法程序库OPB-2原理及应用.武汉:华中科技大学出版社,1997 被引量:1
  • 2王石刚.组合结构优化理论、方法及工程应用研究:[博士学位论文].武汉:华中科技大学,1993 被引量:1
  • 3Bendsoe M P , Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71:197~224 被引量:1
  • 4Hassani B, Hinton E. Homogenization and Structural Topology Optimization. London:Springer-Verlag Limited, 1999 被引量:1
  • 5Suzhki K, Kikuchi N. A homogenization method for shape and topology optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 93:291~381 被引量:1
  • 6Diaz A R, Bendsoe M P. Shape optimization of structures for multiple loading conditions using a homogenization method. Structural Optimization, 1992, 4:17~22 被引量:1
  • 7Jog C S, Haber R B. Stability of finite element models for distributed parameter optimization and topology design. Computer Methods in Applied Mechanics and Engineering, 1996, 130:203~226 被引量:1
  • 8Sigmund O, Petersson J. Numerical instabilities in topology optimization:a survey on procedures dealing with checkerboards, mesh dependencies and local minima. Structural Optimization, 1998, 16:68~75 被引量:1
  • 9Diaz A R, Sigmund O. Checkerboard patterns in layout optimization. Structural Optimization, 1995, 10:40~45 被引量:1
  • 10Chu D N, Xie Y M, Hira A, et al. On various aspects of evolutionary structural optimization for problems with stiffness constraints. Finite Elements in Analysis and Design, 1997, 24:197~212 被引量:1

同被引文献465

引证文献63

二级引证文献428

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部