期刊文献+

多示例深度学习目标跟踪 被引量:4

Target Tracking Based on Multiple Instance Deep Learning
下载PDF
导出
摘要 为解决多示例跟踪算法中外观模型和运动模型不足导致跟踪精度不高的问题,该文提出多示例深度学习目标跟踪算法。针对原始多示例跟踪算法中采用Haar-like特征不能有效表达图像信息的缺点,利用深度去噪自编码器提取示例图像的有效特征,实现图像信息的本质表达,易于分类器正确分类,提高跟踪精度。针对多示例学习跟踪算法中选取弱特征向量不能更换,难以反映目标自身和外界条件变化的缺点,在选择弱分类器过程中,实时替换判别力最弱的特征以适应目标外观的变化。针对原始多示例跟踪算法中运动模型中仅假设帧间物体运动不会超过某个范围,不能有效反映目标的运动状态的缺点,引入粒子滤波算法对目标进行预测,提高跟踪的准确性。在复杂环境下不同图片序列实验结果表明,与多示例跟踪算法及其他跟踪算法相比,该文算法具有更高跟踪精确度和更好的鲁棒性。 To overcome the problem that the deficiency of the appearance model and the motion model often leads to low precision in original Multiple Instance Learning(MIL), a target tracking algorithm is proposed based on multiple instance deep learning. In original MIL algorithm, the image is not represented effectively by Haar-like feature. To improve the tracking precision, a stacked denoising autoencoder is used to learn image features and express the image representations obtained effectively. Selected feature vector could not be replaced in the original MIL algorithm, which has difficulty reflecting the changes of the target and the background.Thus, some weakest discriminative feature vector is replaced with new randomly generated feature vector when weak classifiers are selected. It introduces new information to the target model and adapts to the dynamic changes of the target.Aiming at the deficiency of using motion model where the location of the target is likely to appear within a radius in original MIL algorithm, the particle filter estimates object's location to increase the tracking precision.Compared with the original MIL algorithm and other state-of-the-art trackers in the complex environment, the experiments on variant image sequences show that the proposed algorithm raise the tracking accuracy and the robustness.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第12期2906-2912,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61172111) 吉林省科技厅项目(20090512 20100312)~~
关键词 目标跟踪 多示例学习 深度学习 弱特征更换 粒子滤波 Target tracking Multiple instance learning Deep learning Weak classifier replacement Particle filter
  • 相关文献

参考文献21

  • 1Wu Y,Lim J,and Yang M H.Online object tracking:a benchmark[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Portland,USA,2013:2411-2418. 被引量:1
  • 2Ross D A,Lim J,Lin R S,et al..Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2008,77(3):125-141. 被引量:1
  • 3Zhang K,Zhang L,and Yang M H.Fast compressive tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(10):2002-2015. 被引量:1
  • 4Zhong W,Lu H C,and Yang M H.Robust object tracking via sparse collaborative appearance model[J].IEEE Transactions on Image Processing,2014,23(5):2356-2368. 被引量:1
  • 5陈思,苏松志,李绍滋,吕艳萍,曹冬林.基于在线半监督boosting的协同训练目标跟踪算法[J].电子与信息学报,2014,36(4):888-895. 被引量:15
  • 6Zhang K,Zhang L,Liu Q,et al..Fast tracking via dense spatio-temporal context learning[C].Proceedings of European Conference on Computer Vision,Zurich,Switzerland,2014:127-141. 被引量:1
  • 7Kalal Z,Mikolajczyk K,and Matas J.Tracking- learning-detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422. 被引量:1
  • 8Babenko B,Yang M H,and Belongie S.Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632. 被引量:1
  • 9Zhang K H and Song H H.Real-time visual tracking via online weighted multiple instance learning[J].Pattern Recognition,2013,46(1):397-411. 被引量:1
  • 10陈东成,朱明,高文,孙宏海,杨文波.在线加权多示例学习实时目标跟踪[J].光学精密工程,2014,22(6):1661-1667. 被引量:29

二级参考文献109

  • 1刘俊承,原魁,邹伟,朱海兵.基于特征粒子的Monte Carlo自定位方法[J].机器人,2006,28(1):30-35. 被引量:3
  • 2Thrun S, Burgard W, Fox D. Probabilistic Robotics. London: MIT Press, 2005. 91-280. 被引量:1
  • 3Doucet A, Johansen A M. A tutorial on particle filtering and smoothing: fifteen years later. Handbook of Nonlinear Filtering. London: Oxford University Press, 2009. 被引量:1
  • 4Koller D, Fratkina R. Using learning for approximation in stochastic processes. In: Proceedings of the 15th International Conference on Machine Learning. Madison, USA: Morgan Kaufmann, 1998. 287-295. 被引量:1
  • 5Fox D. Adapting the sample size in particle filters through KLD-sampling. The International Journal of Robotics Research, 2003, 22(12): 985-1003. 被引量:1
  • 6Kwok C, Fox D, Meila M. Real-time particle filters. Proceedings of the IEEE, 2004, 92(3): 469-484. 被引量:1
  • 7Soto A. Self adaptive particle filter. In: Proceedings of the 19th International Joint Conferences on Artificial Intelligence. Edinburgh, UK: Morgan Kaufmann, 2005. 1398-1406. 被引量:1
  • 8Grisetti G, Stachniss C, Burgard W. Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 2432-2437. 被引量:1
  • 9Hu X L, Schon T B, Ljung J. A basic convergence result for particle filtering. IEEE Transactions on Signal Processing, 2008, 56(4): 1337-1348. 被引量:1
  • 10Shan C F, Tan T N, Wei Y C. Real-time hand tracking using a mean shift embedded particle filter. Pattern Recognition, 2007, 40(7): 1958-1970. 被引量:1

共引文献210

同被引文献23

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部