期刊文献+

多机器人最大熵博弈协同定位算法 被引量:6

A new cooperative localization algorithm based on maximum entropy gaming
下载PDF
导出
摘要 研究了多机器人观测到同一目标时的协同定位问题。建立了各个机器人相对观测一致程度的数学描述模型,进而提出用基于极大熵准则的最大熵博弈获取使相对观测一致程度最优的协同定位方式。针对博弈结果的多样性,相应地改变观测方程的雅克比矩阵,推导了可适应多机器人各种博弈结果的扩展Kalman滤波协同定位算法。仿真实验表明,方法可实现机器人团队在协同定位时有选择、更高效地共享相互间的观测信息;在保证协同定位精度提高的同时有效地消除了多机器人相对观测信息间的冲突。 The problem of cooperative localization in the situation when an object is detected by robots simultaneously was studied. As each robot has its own relative observation about the object,a mathematical model for comparing the consistency of these relative observations was presented. With that method,a new cooperative localization algorithm based on maximum entropy gaming and Extended Kalman Filter( EKF) was proposed. As the gaming results are different,the EKF equations that can match any gaming result were derived. Several simulation results showing that the proposed algorithm can improve the localization performance and avoid the relative observations conflict problem in cooperative localization in the meantime.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2014年第2期192-198,共7页 Journal of National University of Defense Technology
基金 北京市教育委员会共建项目专项资助(XK100070532)
关键词 多机器人 最大熵博弈 一致相对观测 协同定位 扩展Kalman滤波算法 multi-robot maximum entropy gaming consistent relative observations cooperative localization EKF algorithm
  • 相关文献

参考文献16

二级参考文献52

  • 1刘俊承,原魁,邹伟,朱海兵.基于特征粒子的Monte Carlo自定位方法[J].机器人,2006,28(1):30-35. 被引量:3
  • 2Thrun S, Burgard W, Fox D. Probabilistic Robotics. London: MIT Press, 2005. 91-280. 被引量:1
  • 3Doucet A, Johansen A M. A tutorial on particle filtering and smoothing: fifteen years later. Handbook of Nonlinear Filtering. London: Oxford University Press, 2009. 被引量:1
  • 4Koller D, Fratkina R. Using learning for approximation in stochastic processes. In: Proceedings of the 15th International Conference on Machine Learning. Madison, USA: Morgan Kaufmann, 1998. 287-295. 被引量:1
  • 5Fox D. Adapting the sample size in particle filters through KLD-sampling. The International Journal of Robotics Research, 2003, 22(12): 985-1003. 被引量:1
  • 6Kwok C, Fox D, Meila M. Real-time particle filters. Proceedings of the IEEE, 2004, 92(3): 469-484. 被引量:1
  • 7Soto A. Self adaptive particle filter. In: Proceedings of the 19th International Joint Conferences on Artificial Intelligence. Edinburgh, UK: Morgan Kaufmann, 2005. 1398-1406. 被引量:1
  • 8Grisetti G, Stachniss C, Burgard W. Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 2432-2437. 被引量:1
  • 9Hu X L, Schon T B, Ljung J. A basic convergence result for particle filtering. IEEE Transactions on Signal Processing, 2008, 56(4): 1337-1348. 被引量:1
  • 10Shan C F, Tan T N, Wei Y C. Real-time hand tracking using a mean shift embedded particle filter. Pattern Recognition, 2007, 40(7): 1958-1970. 被引量:1

共引文献80

同被引文献34

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部