期刊文献+

一种计算动态导数的新方法 被引量:2

A New Method to Calculate Dynamic Derivatives
下载PDF
导出
摘要 基于梯度的算法训练带反馈多层感知网络(recurrent MLP,RMLP)时,必须先计算网络输出层内状态向量对所有可调参数的动态导数,而文献[Puskorius等1992,1994年]给出的动态导数计算公式存在计算量大和存储空间需求高的问题。本文给出计算动态导数的新方法,与文献方法相比,本文方法能显著减少计算量和存储空间。解耦合的扩展Kalman滤波算法(Decoupled Extended Kalman Filter,DEKF)是一种结合梯度和Kalman滤波的高效RMLP训练算法。分别用本文方法和文献方法计算动态导数,再用DEKF调节网络权参数,仿真表明两种情况下训练得到的网络具有同样的性能。 Dynamic derivatives of the state vector in the output layer with respect to all the weights and biases should be first calculated before applying derivative-based training algorithms of RMLP. The formulas of dynamic derivatives in the reference [Puskorius,etc 1994] face the difficulty of heavy calculation and high buffer demand. In this paper, new formulas of dynamic derivatives are presented with fewer calculation quantum and lower buffer demand than the former. DEKF is an efficient algorithm in training RMLP by combining the derivative information and the Kalman filtering procedure. Using the new formulas and the former before the adjustment of the network weights by DEKF respectively, simulation indicates that the two sets of the trained network weights have comparable performance.
出处 《信号处理》 CSCD 2004年第5期456-460,共5页 Journal of Signal Processing
关键词 存储空间 知网 状态向量 训练算法 RM MLP 输出层 导数 文献 计算量 RMLP DEKF dynamic derivative system Identification
  • 相关文献

参考文献7

  • 1Alexander G. Parlos, Sunil K. Menon, Amir E Atiya. 2001. An Algorithmic Approach to Adaptive State Filtering Using Recurrent Neural Networks. IEEE Trans on Neural Networks.Vol.12.No.6. November.pp: 1411-1432. 被引量:1
  • 2Gintaras V. Puskorius. Lee. A. Fcldkamp. 1994. Ncuralcontrol of Nonlinear Dynamical Systems with Kalman Filter Trained Recurrent Networks. IEEE Trans on Neural Networks. Vol.5,No.2.March.pp:279-297. 被引量:1
  • 3G.V. Puskorius. L.A.Feldkamp. 1992. Recurrent Network Training with the Decoupled Extended Kalman Filter Algorithm. SPIE Vol.1710.Science of Artificial Neural Networks.PP:461-473. 被引量:1
  • 4A.G. Parlos. O.T.Rais. A.EAtiya. 2000. Muff-step-ahead prediction using dynamic recurrent neural networks.Neural Networks. 13.PP:765-786. 被引量:1
  • 5Alexander G.Parlos, Kil T. Chong, Amir E Atiya, 1994. Application of the Recurrent Mulitlayer Perceptron in Modeling Complex Process Dynamics. IEEE Trans on Neural Networks. Vol.5, No.2, March. PP:255-265. 被引量:1
  • 6Simon Haykin. NEURAL NETWORKS A Comprehensive Foundation Second Edition. Prentice Hall. Page 12-15. 被引量:1
  • 7Amir EAtiya, Alexander G.Parlos. New Results on Recurrent Network Training: Unifying the Algorithm and Accelerating Convergence. IEEE Trans on Neural Networks. Voll, No.3, May 2000 PP:697-709. 被引量:1

同被引文献19

  • 1ARS KAI HANSEN and Peter SALAMON," Neural network ensembles," IEEE Trans. On Pattern Analysis and Machine Intelligence. Vol. 12 ,Oct. 1990 pp: 993 - 1001. 被引量:1
  • 2Md. Monirul Islam, Xin Yao, and Kazuyuki Murase. "A Constructive Algorithm for Training Cooperative Neural Network Ensembles," IEEE Trans on Neural Networks,Vol. 14, NO. 4,July 2003 pp: 820 -834. 被引量:1
  • 3Yong Liu, and Xin Yao. "Simultaneous Training of Negatively Correlated Neural Networks in an Ensemble," IEEE Trans on SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 29, NO. 6, December 1999.pp: 716-725. 被引量:1
  • 4G.V. Puskorius and L. A. Feldkamp," Recurrent Network Training with the Decoupled Extended Kalman Filter Algorithm,"SPIE Vol. 1710. Science of Artificial Neural Networks. 1992. PP: 461 -473. 被引量:1
  • 5G. V. Puskorius and L. A. Feldkamp, "Parameter-Based Kalman Filter Training: Theory and Implementation," in Kahnan Filtering and Neural Networks, Edited by S.Haykin. John Wiley and Sons, Inc,2001. PP :54. 被引量:1
  • 6Chia-Feng Juang, "A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithms," IEEE Trans on Fuzzy System. VOL. 10, NO. 2, April, 2002. 被引量:1
  • 7Paris A. Mastorocostas and John B. Theocharis, "A Recurrent Fuzzy-Neural Model for Dynamic System Identification," IEEE Trans on Systems, Man and Cybernetics-Part B: Cybernetics, VOL. 32, NO. 2, April 2002. 被引量:1
  • 8Qilian Liang and Jel~ M. Mendel, "Equalization of Nonlinear Time-Varying Channels Using Type-2 Fuzzy Adaptive Filters," IEEE Trans on Fuzzy System. VOL. 8, NO.5, October 2000. 被引量:1
  • 9Alexander G. Parlos, Sunil K. Menon and Amir F.Atiya. "An Algorithmic Approach to Adaptive State Filtering Using Recurrent Neural Networks," IEEE Trans on Neural Networks. Vol. 12. No. 6. November. 2001. pp:1411 - 1432. 被引量:1
  • 10E. A. Wan and R. van der Merwe," The unscented Kalman filter," in Kalman Filtering and Neural Networks, Edited by S. Haykin. John Wiley and Sons ,Inc. ,2001. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部