期刊文献+

抓住机遇 深化改革 推动邵阳市包装工业稳步发展

下载PDF
导出
出处 《湖南包装》 2000年第1期10-11,共2页
  • 相关文献

参考文献5

二级参考文献52

  • 1AREL I,ROSE D C, KARNOWSKI T P. Deep machine learn- ing- A new frontier in artificial intelligence research [ J l- Computational intelligence magazine,2010,5(4) :13-18. 被引量:1
  • 2MARKOFF J. Scientists see promise in deep-learning pro- grams [ N ]. The New York Times, 2012-11-23. 被引量:1
  • 3PLIS S M , HJELM D R,SALAKHUTDINOV R,et al. Deep learning for neuroimaging: a validation study [ J ] Frontiers in neuroscience,2014( 8 ) :229. 被引量:1
  • 4ELFWING S, UCHIBE E, DOYA K. Expected energy-based restricted Boltzmann machine for classification [ J 1- Neural networks, 2015 ( 64 ) : 29 -38. 被引量:1
  • 5MOCANU D C, AMMAR H B. Factored four way conditional restricted Boltzmann machines for activity recognition [ J ]. Pattern recognition letters, 2015 (66) : 100-108. 被引量:1
  • 6LIU P,HAN S Z, MENG Z B,et al. Facial expression rec- ognition via a boosted deep belief network [ C ]//Proc. the 2014 IEEE Conference on Computer Vision and Pattern Recognition. [ S. 1. ] :IEEE ,2014 : 1805-1812. 被引量:1
  • 7HINTON G. Training products of experts by minimizing cont- rastive divergence [ J ]. Neural computation, 2006, 14 ( 8 ) : 1771-1800. 被引量:1
  • 8TIELEMAN T. Training restricted Boltzmann machines using approximations to the likelihood gradient [ C ]//Proc. the 25 th International Conference on Machine learning. [ S. 1. ] : IEEE,2008 : 1064-1071. 被引量:1
  • 9LOPES N, RIBEIRO B. Towards adaptive learning with im- proved convergence of deep belief networks on graphics pro- cessing units [ J ]1. Pattern recognition, 2014,47 ( 1 ) : 114- 127. 被引量:1
  • 10MANSANET J, ALBIOL A,PAREDES R,et al. Mask selec- tive regularization for restricted Bohzmann machines [ J ]. Neurocomputing, 2015,165 : 375-383. 被引量:1

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部