期刊文献+

结合Powell-RWACO的图像边缘提取算法 被引量:1

Image edge extraction combined with Powell-RWACO algorithms
下载PDF
导出
摘要 针对蚁群算法在图像边缘提取中经常出现收敛速度慢、检测精度低、停滞等问题,提出一种结合Powell法的排序加权蚁群(rank weighted ant colony optimization,RWACO)图像边缘提取算法。该算法将RWACO与Powell法相结合,利用RWACO算法进行全局优化,然后将全局最优值作为Powell法的初始点进行局部优化。实验结果表明,该算法兼顾了全局优化和局部优化的优点,与蚁群算法和Canny算法相比,明显提高了图像边缘精度,计算效率比蚁群算法提高了两倍多,并克服了其停滞等缺点,能够高效地检测出图像的边缘,从而验证了该算法的可行性,对今后的图像边缘检测具有参考价值。 For using ant colony optimization to extract image edge, there is always slow convergence, inefficiency and stagna- tion, so presenting an image edge extraction combined with Powell and RWACO algorithms. The algorithm was the combination of RWACO and Powell, Global optimization algorithm was completed by RWACO, then the global optimum value as the initial point of Powell began to local optimization. The experimental results show that the algorithm combines global optimization and local optimization advantages, compared with the ant colony algorithm and Canny algorithm, the precision improves significant- ly, computational efficiency increases more than twice than the ant colony algorithm, and it also overcomes shortcomings, such as slow eomvergence, stagnation. So it can effectively detect image edge. The teasibility of the algorithm is verified, and it has important reference value on image edge extraction.
出处 《计算机应用研究》 CSCD 北大核心 2016年第1期304-306,310,共4页 Application Research of Computers
基金 辽宁省教育厅科学研究一般项目(L2014132)
关键词 边缘检测 排序加权蚁群算法 Powell法 自动阈值法 edge detection rank weighted ant colony algorithm Powell method automatic threshold method
  • 相关文献

参考文献11

  • 1解欢庆..改进的蚁群算法在图像边缘检测中的应用研究[D].兰州大学,2011:
  • 2Zhuang X.Edge feature extraction in digital images with the ant colony system[C] //Proc of IEEE International Conference on Computational Intelligence for Measurement Systems and Applications.2004:133-136.[3] Mullen R J,Monekosso D,Barman S,et al.A review of ant algorithms[J].Expert Systems with Applications,2009,36(6):9608-9617. 被引量:1
  • 3张健,何坤,郑秀清,周激流.基于蚁群优化的图像边缘检测算法[J].计算机工程,2011,37(17):191-193. 被引量:10
  • 4张景虎,边振兴.基于蚁群算法的图像边缘检测研究[J].火力与指挥控制,2010,35(2):115-118. 被引量:16
  • 5潘婷婷,陆丽婷,顾绮芳.QPSO算法和Powell法结合的多分辨率医学图像配准[J].计算机应用与软件,2014,31(7):237-240. 被引量:3
  • 6曹承志等编著..人工智能技术[M].北京:清华大学出版社,2010:297.
  • 7Jevtic′ A,Andina D.Adaptive artificial ant colonies for edge detection in digital images[C] //Proc of the 36th Annual Conference on IEEE Industrial Electronics Society.2010:2813-2816. 被引量:1
  • 8Tian Jing,Yu Weiyu,Xie Shengli.An ant colony optimization algorithm for image edge detection[C] //Proc of IEEE Congress on Evolutionary Computation.2008:751-756. 被引量:1
  • 9Zhang Jian,He Kun,Zheng Xiuqing,et al.An ant colony optimization algorithm for image edge detection[C] //Proc of International Conference on Artificial Intelligence and Computational Intelligence.[S.l.] :IEEE Press,2010:215-219. 被引量:1
  • 10张闯,王婷婷,孙冬娇,葛益娴,常建华.基于欧氏距离图的图像边缘检测[J].中国图象图形学报,2013,18(2):176-183. 被引量:63

二级参考文献32

共引文献85

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部