期刊文献+

QPSO算法和Powell法结合的多分辨率医学图像配准 被引量:3

MULTI-RESOLUTION MEDICAL IMAGE REGISTRATION BASED ON THE COMBINATION OF QPSO AND POWELL'S METHOD
下载PDF
导出
摘要 图像配准一直是图像研究领域的热点话题,互信息的配准方法由于其精度高、鲁棒性强等特点,成为图像配准中的常用方法。但其目标函数存在局部极值问题。针对这个问题,提出一种量子行为的粒子群优化算法(QPSO)和Powell法相结合的多分辨率搜索优化算法。QPSO参数个数少,其每一个迭代步的取样空间能覆盖整个解空间,能保证算法的全局收敛,因此可以有效地解决Powell算法的缺点。该算法将量子行为的粒子群优化算法(QPSO)与Powell法结合起来对二维的MRI图像进行配准。实验结果表明,该方法能够有效地克服互信息函数的局部极值问题,并提高了配准精度和速度。 Image registration has always been the hot topic in image research field, the mutual information registration method becomes a commonly used method in image registration because of its high precision and good robustness. Unfortunately, its objective function has the problem of local extremum. Aiming at this issue, this paper proposes a multi-resolution search optimisation algorithm which combines the QPSO with Powell' s method. Since QPSO has less parameter, and the sampling space Of its every iterative step can cover the whole solution space and can guarantee the global convergence of the algorithm, thus the QPSO can effectively overcome the drawback of Powell' s method. The proposed algorithm registers the 2D MRI image by combining the QPSO algorithm with Powell' s method. Experimental results show that this method can effectively solve the local extremum problem of mutual information function, and effectively improves the accuracy and speed of registration as well.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第7期237-240,共4页 Computer Applications and Software
关键词 图像配准 互信息 量子行为的粒子群优化算法(QPSO) Powell法 Image registration Mutual information Quantum-behaved particle swarm optimisation (QPSO) Powell' s method
  • 相关文献

参考文献2

二级参考文献18

  • 1K. Madsen, H. B. Nielsen, O. Tingleff. Methods for Non-Linear Least Square Problems, 2nd Edition,2004. 被引量:1
  • 2J Kennedy, RC.Eberhart, Y.Shi.Swarm Intelligence, Morgan Kaufmann Publishers, USA 2001,369-362. 被引量:1
  • 3Rafael C.Gonzalez,Richard E. Woods Digital Image Processing Second Edition, Publishing House of Electronics Industry BEIJING 2007.8. 被引量:1
  • 4唐焕文 秦学志.实用最优化方法(第2版)[M].大连理工大学出版社,2001.144. 被引量:1
  • 5Van den PA, Evert Jan D Pol, Viergever MA. Medical image matching. a review with classification. Proc IEEE Engineering in Medicine and Biology, 1993. 26.?A?A?A?A 被引量:1
  • 6Holden M, Denton DJG, et al. Voxel similarity measure for 3-D serial MR brain image registration. Proc IEEE Transactions on Medical Imaging, 2000, 19 (2): 94 - 102. 被引量:1
  • 7Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information. Proc IEEE Transactions on Medical Imaging, 1997, 16 (2): 187- 198. 被引量:1
  • 8Ritter N, and Eikelboom RH. Registration of stereo and temporal images of the retina. IEEE Trans on Medical Imaging, 1999, 18(5): 404-418. 被引量:1
  • 9Maes F, Vandermeulen D, Suetens P. Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Medical image anal,1999,3:373. 被引量:1
  • 10Camp J and Robb R. A novel binning method for improved accuracy and speed of volume image registration using normalized mutual information. Medical Imaging: Imaging Processing, 1999, 3361:24-31. 被引量:1

共引文献13

同被引文献22

  • 1Heyde B, Jasaityte R, Barbosa D, et al. Elastic image registration versus speckle tracking for 2-D myocardial motion estimation: a di- rect comparison in vivo [J]. Medical Imaging, IEEE Transactions on, 2013, 32 (2): 449-459. 被引量:1
  • 2Pan M, Jiang J, Rong Q, et al. A modified medical image regis- tration [J]. Multimedia Tools and Applications, 2014, 70 (3): 1585 - 1615. 被引量:1
  • 3Gu Z Y, Du C M, Jin L, et al. Medical Image Registration Corn bined with SURF and Improved RANSAC Algorithm [J]. Applied Mechanics and Materials, 2013:1233 - 1237. 被引量:1
  • 4Hwuang E, Danish S, Rusu M, et al. Anisotropic smoothing reg- ularization (AnSR) in Thirion's Demons registration evaluates brain MRI tissue changes post-laser ablation. [A]. Annual Internation- al Conference of the IEEE Engineering in Medicine and Biology Soci- ety [C]. 2013. 被引量:1
  • 5Thomas Yeo B, Sabuneu M, Vercauteren T, et al. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 [M]. Springer Berlin Heidelberg, 2008:745 - 753. 被引量:1
  • 6Zhuang X.Edge feature extraction in digital images with the ant colony system[C] //Proc of IEEE International Conference on Computational Intelligence for Measurement Systems and Applications.2004:133-136.[3] Mullen R J,Monekosso D,Barman S,et al.A review of ant algorithms[J].Expert Systems with Applications,2009,36(6):9608-9617. 被引量:1
  • 7Jevtic′ A,Andina D.Adaptive artificial ant colonies for edge detection in digital images[C] //Proc of the 36th Annual Conference on IEEE Industrial Electronics Society.2010:2813-2816. 被引量:1
  • 8Tian Jing,Yu Weiyu,Xie Shengli.An ant colony optimization algorithm for image edge detection[C] //Proc of IEEE Congress on Evolutionary Computation.2008:751-756. 被引量:1
  • 9Zhang Jian,He Kun,Zheng Xiuqing,et al.An ant colony optimization algorithm for image edge detection[C] //Proc of International Conference on Artificial Intelligence and Computational Intelligence.[S.l.] :IEEE Press,2010:215-219. 被引量:1
  • 10Fabrizio R,Annarita L.Color edge detection in presence of Gaussian noise using nonlinear prefiltering[J].IEEE Trans on Instrumentation and Measurement,2005,54(1):352-358. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部