期刊文献+

结合高斯加权距离图的图像边缘提取 被引量:9

Image edge extraction combined with a Gaussian weighted distance graph
原文传递
导出
摘要 目的边缘是图像最为重要的特征之一,是图象分析与识别的基础。对于目标的分割、测量而言,边缘提取的连续性与抗噪性显得尤为重要,其可通过区域增长等算法提取目标区域,为抠图、统计测量提供必要的支持,本文以实现目标轮廓的有效提取为目的,提出一种结合高斯加权距离图的图像边缘提取方法。方法首先通过计算分块区域内像素间的高斯加权距离,获得高斯加权距离图,该图与原图相比,不仅可以较好地突出边缘轮廓,而且可以统一背景灰度。其次通过分析高斯加权距离图的灰度直方图,将灰度分为两类并计算类中心,以此作为无边缘活动轮廓(CV)模型的c1和c2参数,最后通过CV模型求解图像边缘。结果与其他边缘提取算法相比,该算法不仅具有较好的抗噪性,同时可以保证图像边缘提取的连续性。结论实验结果验证了本文算法的有效性。 Objective Edges are one of the most important features of an image, they are the basis of many image analysis and recognition techniques. The continuity and noise immunity of the edge extraction is particularly important for the seg- mentation and measurement. Regional growth algorithms can be used to extract the target area. They can provide the nece- ssary support for the matting and statistical measurement. For the purpose of effective contour extraction, we propose a meth- od of image edge extraction combined with a Gaussian weighted distance graph in this paper. Method First, by calculating the distance between the pixels within the sub-block regions, the graph of Gaussian weighted distances is obtained. Compa- ring with the original figure, it not only can better highlight the edge contour, but also can get a uniformed background gray. Second, by analyzing the histogram of the Gaussian weighted distance, the gray values can be divided into two cla- sses, each class center is calculated for active contour without edge (CV) parameters of cI and c2. Finally, edges of the image are found using the CV model. Result Comparing with other edge extraction algorithms, the proposed algorithm not only has better noise immunity, but also can guarantee the continuity of the image edge extraction. Conclusion The experi- mental results demonstrate the effectiveness of the proposed algorithm.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第1期62-68,共7页 Journal of Image and Graphics
基金 国家青年科学基金项目(61003162 61101057)
关键词 高斯加权距离 边缘提取 CV模型 灰度直方图 类中心 Gaussian weighted distance edge extracting CV model gray histogram class center
  • 相关文献

参考文献11

二级参考文献95

共引文献644

同被引文献73

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部