期刊文献+

基于双目视觉的四边形闭环跟踪算法 被引量:5

Closed Quadrilateral Feature Tracking Algorithm Based on Binocular Vision
原文传递
导出
摘要 针对动态背景下视觉跟踪存在的错误率大、鲁棒性不强以及多目相机信息融合难等问题,提出一种基于双目匹配的视觉跟踪算法.结合双目相机的物理结构特点,该算法以四边形闭环方法对特征点进行匹配,实现特征点的双目匹配和立体跟踪,并优化匹配的搜索结构.算法首先采用高斯-拉普拉斯模板对图像进行滤波,利用Harris角点检测算法提取特征点并依次构造描述子序列,然后以绝对误差和作为匹配代价的衡量准则,建立四边搜索准则进行邻近搜索,同时引入RANSAC(随机采样一致性)算法进行可靠性筛选,最终通过4点构成的四边形闭环检测实现了特征点跟踪精度的改进.通过对不同分辨率、不同路况图像集进行测试实验,所提出的四边形跟踪算法特征跟踪正确率可达99.80%,鲁棒性和精度均优于光流法. A visual tracking algorithm based on binocular matching is proposed to solve the problems such as high error rate, low robustness and poor information fusion existing in current visual tracking methods under dynamic background. Based on the physical structure of binocular camera, the proposed algorithm adopts a closed quadrilateral method to match feature points so as to implement the binocular matching and 3D tracking and optimize the searching structure. The binocular images are filtered by Gauss-Laplace template, and the feature points extracted by the Harris corner detection algorithm are encapsulated orderly into feature descriptor. Then, the sum of absolute difference is used as the matching criteria, a 4-side searching criteria is set up for neighbor searching, and RANSAC (random sample consensus) algorithm is introduced for reliability screening. Finally, the accuracy of feature tracking is improved through the 4 points formed quadrilateral closed-loop detection. To evaluate the performance of the proposed method, images with different resolutions under different road conditions are collected, and test experiments are conducted. The experimental results show that the average tracking precision of the proposed method reaches 99.80%. The robustness and tracking accuracy of the proposed method is superior to the optical flow method.
出处 《机器人》 EI CSCD 北大核心 2015年第6期674-682,共9页 Robot
基金 国家自然科学基金(61305111 91120307 91320301) 安徽省自然科学基金(1508085MF133)
关键词 视觉跟踪 信息融合 双目匹配 四边形闭环 visual tracking information fusion binocular matching closed quadrilateral
  • 相关文献

参考文献13

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2Nourani-Vatani N, Roberts J, Srinivasan M V, et al. Practical vi- sual odometry for car-like vehicles[C]//IEEE International Con- ference on Robotics and Automation. Piscataway, USA: IEEE, 2009: 3551-3557. 被引量:1
  • 3Mei C, Sibley G, Cummins M, et al. RSLAM: A system for large scale mapping in constant-time using stereo[J]. Interna- tional Journal of Computer Vision, 2011, 94(2): 198-214. 被引量:1
  • 4Geiger A, Ziegler J, Stiller C. StereoScan: Dense 3D re- construction in real-time[C]//IEEE Intelligent Vehicles Sympo- sium. Piscataway, USA: IEEE, 2011: 963-968. 被引量:1
  • 5叶平,李自亮,孙汉旭.基于立体视觉的球形机器人定位方法[J].控制与决策,2013,28(4):632-636. 被引量:7
  • 6王保丰,周建亮,唐歌实,邸凯昌,万文辉,刘传凯,王镓.嫦娥三号巡视器视觉定位方法[J].中国科学:信息科学,2014,44(4):452-460. 被引量:27
  • 7Hsieh J W. Fast stitching algorithm for moving object detec- tion and mosaic construction[J]. Image and Vision Computing, 2004, 22(4): 291-306. 被引量:1
  • 8Thomas B, Jitendra M. Large displacement optical flow: De- scriptor matching in variational motion estimation[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 500-513. 被引量:1
  • 9Harris C, Stephens M. A combined corner and edge detec- tor[C]//4th Alvey Vision Conference. Piscataway, USA: IEEE, 1988: 147-152. 被引量:1
  • 10Hirschmuller H, Scharstein D. Evaluation of cost functions for stereo matching[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2007: 2292- 2299. 被引量:1

二级参考文献29

共引文献286

同被引文献27

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部