期刊文献+

基于HOG和SVM的人体行为仿生识别方法 被引量:9

Biomimetic recognition method of human behavior based on HOG and SVM
下载PDF
导出
摘要 在研究了人类视觉系统处理机制的基础上,首先利用方向梯度描述符(HOG)建立了图像的鲁棒表示;然后,根据人类视觉系统的并行处理机制和仿生信息学理论,提出了基于HOG+SVM的人体行为仿生识别与分类方法。利用针对识别与分类方法的评价指标对本文方法进行了评价,最后,与目前常用方法进行了比较,结果表明,在针对静态图像中人体行为的分类与识别效果方面,本文方法对差别较大的行为的识别效果好于常用方法,对相似行为的识别效果还有待于进一步提高。 The robust representation of image is established by Histogram of Oriented Gradient(HOG).According to the processing mechanism of human visual system and the theory of multidimensional space biomimetic informatics,a biomimetic classification and recognition method of human behavior are proposed,which is based on HOG+SVM.The method is evaluated and compared with other commonly used methods.Results show that,for the classification and recognition of human behavior in still image,the proposed methods have better performance in recognizing different kinds of behavior,but the performance in recognizing similar behaviors still needs improvement.
作者 王丹 张祥合
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第S1期489-492,共4页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(50635030)
关键词 人工智能 方向梯度描述符 支持向量机 人体行为 仿生识别 artificial intelligence Histogram of Oriented Gradient(HOG),support vector machine(SVM) human behavior biomimetic recognition
  • 相关文献

参考文献9

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 2皮文凯,刘宏,查红彬.基于自适应背景模型的全方位视觉人体运动检测[J].北京大学学报(自然科学版),2004,40(3):458-464. 被引量:19
  • 3谭菊..基于视觉感知的目标特性分析[D].重庆大学,2010:
  • 4J. Zhang,M. Marsza?ek,S. Lazebnik,C. Schmid.Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study[J]. International Journal of Computer Vision . 2007 (2) 被引量:1
  • 5Smal,I. et al.Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis. Medical Imaging, IEEE Transactions on . 2008 被引量:1
  • 6WEBER M,WELLING M,PERONA P.Towards automatic discovery of object cat-egories. IEEE Conference on Computer Vision and Pattern Recognition . 2000 被引量:1
  • 7Delaitre V,Laptev I,Sivic J.Recognizing human actions in still images: a study ofbag-of-features and part-based representations. Proceedings of the BritishMachine Vision Conference . 2010 被引量:1
  • 8Ikizler N,Cinbis R G,Pehlivan S,et al.RecognizingActions from Still Images. 19th International Con-ference on Pattern Recognition (ICPR) . 2008 被引量:1
  • 9Yang Wei-long,Wang Yang,Mori Greg,et al.Recog-nizing Human Actions from Still Images with Latent Po-ses. 2010 IEEE Conference on Computer Visionand Pattern Recognition (CVPR) . 2010 被引量:1

二级参考文献15

  • 1王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3Gavrila D M.The Visual Analysis of Human Movement:A Survey.Computer Vision and Image Understanding,1999,73(1):82-98 被引量:1
  • 4Wren C R,Azarbayejani A,Darrell T,et al.Pfinder:Real-Time Tracking of the Human Body.IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):780 -785 被引量:1
  • 5Utsumi A,Mori H,Ohya J,et al.Multiple-View-Based Tracking of Multiple Humans.In:Proc of IEEE Intl Conf on Pattern Recognition,Brisbane:IEEE Computer Society,1998,597-601 被引量:1
  • 6Cai Q,Aggarwal J K.Tracking Human Motion Using Multiple Cameras.In:Proc IEEE Intl Conf on Pattern Recognition,Vienna:1996,68-72 被引量:1
  • 7Krishnan A,Ahuja N.Panoramic Image Acquisition.In:Proc IEEE Computer Vision and Pattern Recognition,San Francisco:IEEE Computer Society,1996,379-384 被引量:1
  • 8Onoe Y,Yamazawa K,Yokoya N,et al.Visual Surveillance and Monitoring System Using an Omnidirectional Video Camera.In:Proc IEEE Intl Confon Pattern Recognition,Brisbane:IEEE Computer Society,1998,588-592 被引量:1
  • 9Ishiguro H.Development of Low-Cost Compact Omnidirectional Vision Sensors and Their Applications.In:Proc of Intl Confon Information Systems,Analysis ,and Synthesis,Orlando:1998,433-439 被引量:1
  • 10McKenna S,Jabri S,Duric Z,et al.Tracking Groups of People.Computer Vision and Image Understanding,2000,80:42-56 被引量:1

共引文献269

同被引文献47

  • 1周宝余,臧雪柏,赵浩宇,包环宇.基于QT的无线多路视频监控系统[J].吉林大学学报(工学版),2011,41(S1):204-207. 被引量:11
  • 2万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 3陈守煜,胡吉敏.可变模糊方法及其在工件识别中的应用[J].系统工程与电子技术,2006,28(9):1325-1328. 被引量:30
  • 4Rea N, Dahyot R, Kokaram A. Image and Video Retrieval[M]. Dublin, Ireland: Springer, 2004, 88- 97. 被引量:1
  • 5Ma Xiang, Bashir F, Khokhar A A, et al. Event a- nalysis based on multiple interactive motion trajecto- ries[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(3): 397-406. 被引量:1
  • 6Guo Ping, Miao Zhen-jiang. Multi-person activity recognition through hierarchical and observation de- composed HMM[C] // Multimedia and Expo (IC- ME). Suntee City: IEEE, 2010. 被引量:1
  • 7Rabiner Lawrence R. A tutorial on hidden Markov models and selected applications in speech recogni- tion[J]. Proceedings of the IEEE, 1989, 77(2): 257-286. 被引量:1
  • 8Matthew Brand, Oliver Nuria, Pentland Alex. Cou- pled hidden Markov models for complex action rec- ognition[C]//IEEE Computer Vision and Pattern Recognition. San Juan : IEEE, 1997. 被引量:1
  • 9Zoubin Ghahramani,Jordan Michael I. Factorial hid- den markov models[J].Machine Learning, 1997, 29 (2/3) : 245-273. 被引量:1
  • 10Pradeep N, Ramakant N. Coupled hidden semi markov models for activity recognition[C] // Work- shop on Motion and Video Computing - WMVC, Austin, TX, USA: IEEE, 2007. 被引量:1

引证文献9

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部