期刊文献+

基于道路形态分析的道路边界提取 被引量:9

Road Curb Extraction Based on Road Shape Analysis
原文传递
导出
摘要 基于障碍物栅格图的道路边界检测目前主要通过对道路区域或符合边界特征的种子点进行生长来实现.但这些算法易受路内障碍物的干扰,其主要原因在于道路形态信息的缺失,包括道路趋势信息和道路宽度分布信息.为此,本文通过对障碍物栅格图进行距离变换获得道路的趋势信息,同时通过构建道路的宽度分布直方图来获取道路宽度分布信息.在此基础上,完成道路边界种子点的提取,接着通过区域生长获取完整的道路边界点,最后进行二次曲线拟合得到完整的道路边界形状.实验证明,本文方法对车流量较大环境下的道路边界提取具有较高的鲁棒性和准确性. The road curb detection based on obstacle grid map is implemented mainly through the growing of road area or the seed points satisfying the features of road curb. However, these algorithms are prone to be affected by the obstacles inside the road area because of the absence of the road shape information, such as road trend information and road width distribution information. To overcome this problem, distance transformation is firstly performed on obstacle grid map to acquire the trend information, followed by the construction of width distribution histogram to express road width distribution information.Based on these, road curb seed points are extracted, the full road curb points are obtained through region growth, and the road curb shape is acquired through quadratic curve fitting. The experiment proves that the algorithm presented performs relatively more robust and accurate for the road curb extraction in relative busier road.
出处 《机器人》 EI CSCD 北大核心 2016年第3期322-328,共7页 Robot
基金 国家自然科学基金重大研究计划重点项目(91120307) 国家自然科学基金重大研究计划集成项目(91320301) 国家自然科学基金重大研究计划培育项目(91420104)
关键词 障碍物栅格图 道路边界提取 道路趋势分析 道路宽度分布 obstacle grid map road curb extraction road trend analysis road width distribution
  • 相关文献

参考文献11

  • 1Zhao G Q,Yuan J S.Curb detection and tracking using 3D-LIDAR scanner[C]//IEEE International Conference on Image Processing.Piscataway,USA: IEEE,2012: 437-440. 被引量:1
  • 2Zhang Y H,Wang J,Wang X N,et al.A real-time curb detection and tracking method for UGVs by using a 3D-LIDAR sensor[C]//IEEE Conference on Control Applications.Piscataway,USA: IEEE,2015: 1020-1025. 被引量:1
  • 3Siegemund J,Franke U,F?erstner W.A temporal filter approach for detection and reconstruction of curbs and road surfaces based on conditional random fields[C]//IEEE Intelligent Vehicles Symposium.Piscataway,USA: IEEE,2011: 637-642. 被引量:1
  • 4Han J,Kim D,Lee M,et al.Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor[J].IEEE Transactions on Vehicular Technology,2012,61(3): 971-985. 被引量:1
  • 5Bar Hillel A,Lerner R,Levi D,et al.Recent progress in road and lane detection: A survey[J].Machine Vision and Applications,2014,25(3): 727-745. 被引量:1
  • 6Kellner M,Bouzouraa M E,Hofmann U.Road curb detection based on different elevation mapping techniques[C]//IEEE Intelligent Vehicles Symposium.Piscataway,USA: IEEE,2014: 1217-1224. 被引量:1
  • 7Liu Z,Liu D X,Chen T T,et al.Curb detection using 2D range data in a campus environment[C]//Seventh International Conference on Image and Graphics.Piscataway,USA: IEEE,2013: 291-296. 被引量:1
  • 8Chen T T,Dai B,Liu D X,et al.Velodyne-based curb detection up to 50 meters away[C]//IEEE Intelligent Vehicles Symposium.Piscataway,USA: IEEE,2015: 241-248. 被引量:1
  • 9高华,刘济林.车辆视频导航中道路检测方法研究进展[J].传感器与微系统,2012,31(1):1-3. 被引量:5
  • 10Hata A Y,Osorio F S,Wolf D F.Robust curb detection and vehicle localization in urban environments[C]//IEEE Intelligent Vehicles Symposium.Piscataway,USA: IEEE,2014: 1257-1262. 被引量:1

二级参考文献30

  • 1刘铁,郑南宁,程洪,邢征北.基于变形模板和遗传算法的道路检测方法[J].模式识别与人工智能,2004,17(2):156-160. 被引量:4
  • 2唐高友,邓小丽,黄席樾,廖传锦.公路视觉导航中道路图像的阈值分割[J].计算机仿真,2005,22(12):211-213. 被引量:7
  • 3张伟,黄席樾,杨尚罡.汽车导航系统中的道路检测[J].重庆大学学报(自然科学版),2006,29(8):87-90. 被引量:8
  • 4Kim Zuwhan. Robust lane detection and tracking in challenging scenarios [ J ]. IEEE Transactions on Inte|ligent Transportation Systems,2008,9 ( 1 ) :16-26. 被引量:1
  • 5Alvarezl J M, Lumbreras F, Gevers T, et al. Geographic inlorma- tion for vision-based road detection[ C ]//2010 IEEE Intelligent Vehicles Symposium, San Diego, USA ,2010:621 -626. 被引量:1
  • 6He Yinghua, Wang Hong, Zhang Bo. Color-based road detection in urban traffic Scenes[ J]. IEEE Transactions on Intelligent Trans- portation Systems ,2004,5 (4) :309-318. 被引量:1
  • 7Chiu K Y, Lin S F. Lane detection using color-based segmenta- tion[ C]//Proceedings of IEEE Intelligent Vehicles Symposium, Washington D C : IEEE ,2005 : 706-711. 被引量:1
  • 8Zhang J, Nagel H H. Texture-based segmentation of road image- s[C]//IEEE Symposium on Intelligent Vehicles,Washington D C : IEEE, 1994:260-265. 被引量:1
  • 9Wang Jian, Ji Zhong, Su Yuting. Unstrt/ctured road detection using hybrid features[ C]JJIntemational Conference on Machine Learn- ing and Cybernetics, Baoding, China,2009:482 -486. 被引量:1
  • 10Lin Qing, Han Youngjoon, Hahn Hernsoo. Real-time lane depar- ture detection based on extended edge-linking algorithm [ C ] // Proceedings of 2010 Second International Conference on Computer Research and Development, Kuala Lumpur, Malaysia, 2010 : 725 -730. 被引量:1

共引文献4

同被引文献41

引证文献9

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部