期刊文献+

极大型差分方程x_n=max{1/x_(n-k)-α,A_n/x_(n-k-2)-β}的全局吸引性 被引量:1

Global Attractivity of the Max-Type Difference Equationx_n=max{1/x_(n-k)-α,A_n/x_(n-k-2)-β}
下载PDF
导出
摘要 本文主要研究带有指数的极大型差分方程xn=max{1/xn-kα,An/xn-k-2β},n=0,1,…的全局性质,其中k∈N且k≥1,指数0<α≤1,0<β<1,参数An是任意实数序列且An∈(0,1],初始值x-k-2,x-k-1,…,x-1∈(0,+∞)。本文得到该差分方程的每个正解都收敛于1的结论。 In this paper, the global attractivity of the max-type difference equation with index xn=max max{1/x_(n-k)-α,A_n/x_(n-k-2)-β}, wherekENandAn∈(0,1],初始值x-k-2,x-k-1,…,x-1∈(0,+∞) is studied. Every positive solution of this difference equation is proved to converge to 1.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2015年第3期71-74,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11461007) 广西高校科学技术研究项目(LX2014048 LX2014055) 广西师范大学青年基金资助项目
关键词 极大型差分方程 正解 收敛性 全局吸引性 max-type difference equations positive solution convergence global attractivity
  • 相关文献

参考文献9

  • 1刘亚文,陈亦望,徐鑫,刘宗信.基于辅助差分方程的完全匹配层在时域多分辨率分析算法中的应用与性能分析[J].物理学报,2013,62(3):114-119. 被引量:4
  • 2曾维.差分方程在人口增长预测中的应用研究[J].计算机仿真,2011,28(5):358-362. 被引量:4
  • 3韩彩虹,李略,黄荣里.差分方程x_(n+1)=p_n+x_n/x_(n-1)动力学性质[J].广西师范大学学报(自然科学版),2013,31(1):44-47. 被引量:1
  • 4STEVIC S. Periodicity of a class of nonautonomous max-type difference equations[J]. Applied Mathematics and Computation, 2011,217(23) : 9562-9566. 被引量:1
  • 5CRANSTON D W, KENT C M. On the boundedness of positive solutions of the reciprocal max-type differenceequation xn= max {A1n-1/xn-1,A2n-1/xn-2,...,A1x-1/xn-1}with periodic parameters [J]. Applied Mathematics and Computation,2013, 221: 144-151. 被引量:1
  • 6GELISKEN A, CINAR C, KARATAS R, et al. The nature of solutions of the difference equation xn =max{A/xn-2,B/xnn- 3} [C]// Proceedings of First International Conference on Analysis and Applied Mathematics: AIP Con[erence Proceedings Vol 1470. Melville, NY: AlP Publishing LLC, 2012 : 50-52. 被引量:1
  • 7YANG Xiao-fan, LIAO Xiao-feng, LI Chuan-dong. On a difference equation with maximum[J]. Applied Mathematics and Computation, 2006, 181(1): 1-5. 被引量:1
  • 8GELISKEN A, CINAR C. On the global attractivity of a max-type difference equation[J]. Discrete Dynamics in Nature and Society, 2009, 2009:812674. 被引量:1
  • 9SUN Fang-kuan. On the asymptotic behavior of a difference equation with maximum[J]. Discrete Dynamics in Nature and Society, 2008, 2008:243291. 被引量:1

二级参考文献19

  • 1胡仕明,黄国石.Logistic模型的反馈控制分析[C].Systems Engineering, Systems Science and Complexity Research-Proceed- ing of 11 th Annual Conference of Systems Engineering Society of China, 2000. 被引量:1
  • 2DEVAULT R,KENT C,KOSMALA W. On the recursive sequence xn+l =p+xn/xn-k [J]. Journal of Difference Equa- Xn tions and Applications, 2003,9 (8) : 721-730. 被引量:1
  • 3SUN Tai-xiang,XI Hong-jian,HAN Cai-hong,et al. Dynamics of the max-type difference equation x.+l = max {Xn-m/1,Xn-y/An}[J].Journal of Applied Mathematics and Computing,2012,38(1/2):173-180. 被引量:1
  • 4LIU Wan-ping,STEVIC' S. Global attractivity of a family of nonautonomous max-type difference equations[J]. Ap- plied Mathematics and Computation, 2012,218 (11 ) : 6297-6303. 被引量:1
  • 5KULENOVIC' M ,LADAS G. Dynamics of second order rational difference equations with open problems and conjec- tures[M]. New York :Chapman & Hall/CRC Press, 2002 : 60-66. 被引量:1
  • 6DEVAULT R,KOCIC V L,STUTSON D. Global behavior of solutions of the nonlinear differenee equation x+1 =Pn+Xn/Xn-1[J].Journal of Difference Equations and Applications, 2005,11 (8) : 707-719. 被引量:1
  • 7KNOPF P M, YING Sun-huang. On the period-five trichotomy of rational equation Xn+1 =Xn/P+Xn-2[J].Journal of Difference Equations and Applications, 2007,13 (7) : 665-670. 被引量:1
  • 8DEHGHAN M,RASTEGAR N. Stability and periodic character of a third order difference equation[J]. Mathemati- cal and Computer Modelling, 2011,54(11/12) : 2560-2564. 被引量:1
  • 9HE Li, LIU Wan-ping. Periodic Solutions to a third-order conditional difference equation over the integers [J]. Dis- crete Dynamics in Nature and Society, 2011,2011 : 827235. 被引量:1
  • 10谭东风,王斌.基于战斗方程的婚姻人口模型[J].计算机仿真,2008,25(2):282-285. 被引量:1

共引文献6

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部