摘要
根据北京2003年SARS疫情发展的实际情况,利用差分方程建立模拟北京疫情发展过程(2003年3月20日至7月14日)的数学模型.建立主要由模拟值与实际统计值之差的平方和构成的目标函数.最后利用Gauss-Newton最优化方法,对模型中参数进行估计.
This thesis analysed the observed statistical data of SARS in Beijing in 2003. Then a mathematical model was established to simulate the SARS development in Beijing by difference equations,and an objective function was also established which mainly consists of the sum of squares of the differences between the simulated and observed statistical data of SARS in Beijing. At last, the parameters were estimated by Gauss-Newton optimization method.
出处
《生物数学学报》
CSCD
北大核心
2006年第1期21-27,共7页
Journal of Biomathematics
基金
国家自然科学基金资助项目(40372111)
关键词
SARS
差分方程
数学模型
Gauss—Newton最优化方法
反问题
参数估计
Sever acute respiratory syndrome
Difference equation
Mathematics model
Gauss-Newton optimization method
Inverse problem
Parameter estimation