期刊文献+

金属规则表面形貌影响二次电子产额的解析模型 被引量:5

Analytical model of secondary electron yield from metal surface with regular structures
下载PDF
导出
摘要 表面形貌是影响二次电子发射特性的重要因素,但目前仍缺乏刻画这一影响规律的解析模型.本文通过分析发现表面结构的遮挡作用是影响二次电子发射特性的主要因素.基于二次电子以余弦角分布出射的规律,提出了建立表面形貌参数与二次电子产额之间定量关系的方法,并以矩形槽和三角槽为例,建立了电子正入射和斜入射时的一代二次电子产额的解析模型.将推导的解析模型与Monte Carlo模拟结果和实验结果进行了比较,结果表明本文建立的模型能够正确反映规则表面形貌的二次电子产额.本文的模型对于反映常用规则结构影响二次电子出射的规律以及指导通过表面结构调控二次电子发射特性都具有参考价值. An analytical model of secondary electron(SE) emission(SEE) from metal surface with regular structure is presented.In this model,the quantitative relationship between the SE emission yield(SEY) and surface topography is examined.Using the idea of multi-generation for SE emission,the first-generation of SEs is considered as being dominant in total SEs.The shielding effect of the surface structures on the SE is found to be the main factor influencing final SEY.On the basis of the cosine distribution of secondary electrons emission direction,the quantitative relationship between the SEY and surface topography parameters is revealed.Then taking the rectangular and triangular grooves for example,the analytical formulas of first-generation SEY are derived for both normal and oblique incidence.The analytical results are then verified with the Monte Carlo simulation results and experimental data.The results show that a rectangular groove with a bigger depth-to-width ratio can suppress the SEE more efficiently.For a triangular groove,owing to having both enhancing and suppressing effects on SEE,a small groove angle is required for effective SEE suppression.The present analytical model gives an insight into the relationship between the SEY and the surface topography parameters and is helpful for the structure design to modify SEY.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第20期392-400,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11375139,11175140) 空间微波技术重点实验室基金(批准号:9140C530101130C53013)资助的课题~~
关键词 二次电子发射 二次电子产额 解析模型 规则表面 secondary electron emission secondary electron yield analytical model regular surfaces
  • 相关文献

参考文献22

  • 1Seiler H 1983 J.Appl.Phys.54 R1. 被引量:1
  • 2Shih A,Yater J,Hor C,Abrams R 1997 Appl.Surf.Sci.111 251. 被引量:1
  • 3Pimpec F L,Kirby R E,King F,Pivi M 2005 Nucl.Instrum.Methods Phys.Res.,Sect.A: Accelerators,Spectrometers,Detectors and Associated Equipment 551 187. 被引量:1
  • 4Kishek R A,Lau Y Y,Ang L K,Valfells A,Gilgenbach R M 1998 Phys.Plasmas 5 2120. 被引量:1
  • 5Duan P,Qin H J,Zhou X W,Cao A N,Chen L,Gao H 2014 Chin.Phys.B 23 075203. 被引量:1
  • 6Zhao S L,Bertrand P 2011 Chin.Phys.B 20 037901. 被引量:1
  • 7Xie A G,Zhan Y,Gao Z Y,Wu H Y 2013 Chin.Phys.B 22 057901. 被引量:1
  • 8Vaughan J 1989 IEEE T.Electron Dev.36 1963. 被引量:1
  • 9Suetsugu Y,Tsuchiya M,Nishidono T,Kato N,Satoh N,Endo S,Yokoyama T 2003 J.Vac.Sci.Technol.A 21 186. 被引量:1
  • 10Pivi M,King F K,Kirby R E,Raubenheimer T O,Stupakov G,Pimpec F 2008 J.Appl.Phys.104 104904. 被引量:1

同被引文献56

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部