期刊文献+

序半群上的S-拓扑

S-topology on Ordered Semigroups
原文传递
导出
摘要 引入了序半群上S-拓扑和强S-拓扑的概念,给出了S-闭集和强S-闭集的等价刻画,讨论了序半群赋上强S-拓扑的连续映射和序半群同态的关系,最后证明了S-拓扑的闭集格关于包含序构成一个代数的完全分配格。 In this paper, the notions of S-topology and strongly S-topology on ordered semigroups are proposed, and equivalent characterizations of S-closed subset and strongly S-closed subset are given. The relation between continuous mapping of strongly S-topological spaces and homomorphism of ordered semigroups is discussed, and it is proved that the family of all S-closed sets forms an algebraic and completely distributive lattice under the set-inclusion order.
作者 夏常春 赵彬
出处 《模糊系统与数学》 CSCD 北大核心 2015年第4期1-5,共5页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11171196 11301316) 中央高校基本科研业务费专项基金资助项目(GK201302003)
关键词 序半群 S-拓扑 S-闭集 S-开集 Ordered Semigroup S-topology S-closed Set S-open Set
  • 相关文献

参考文献9

二级参考文献19

  • 1Lawson. Encounters between topology and domain theory[C]//Keimel K,etal. Domains and Processes. Amsterdam: Kluwer Acad Pub, 2001:1 - 28. 被引量:1
  • 2Gierz G, Hofmann K H, Keimel K, Lawson J D, Mislove M, Scott D S. Continuous lattices and domains[M]. Cambridge University Press, 2003. 被引量:1
  • 3朱平天,李伯蒺,邹园.近似代数[M].北京:科学出版社,2003. 被引量:3
  • 4闵嗣鹤,严士健.初等数论[M].北京:高等教育出版社,2004:16-18. 被引量:11
  • 5Blanck J. Effectivity of regular spaces[J]. Lecture Notes in Computer Science, 2001,2064:1 - 15. 被引量:1
  • 6Lawson J. Spaces of maximal points[J]. Mathematical Structures in Computer Science, 1997,7 : 543-555. 被引量:1
  • 7Edalat A. Dynamical system ,measures,and fraettals via domain theory[J]. Information and Computation, 1995,120: 32-48. 被引量:1
  • 8Edalat A. Domains for computation in mathematics,phisics,and exact real arithmetic[J]. Bulletion of Symbolic Logic, 1997,34:401-452. 被引量:1
  • 9Edalat A,Sunderhauf P. Computable Banach spaces via domaintheory[J]. Theoretical Computer Science, 1999,210: 169-184. 被引量:1
  • 10Martin K. A foundation for computatipn[D]. Department of Mathematics,Tulane University,2000. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部