期刊文献+

带周期位势平面薛定谔-泊松方程组的结点解

Nodal solutions for a class of planar Schrdinger-Poisson systems with periodic potential
下载PDF
导出
摘要 利用临界点理论中的亏格定理和Nehari流形技巧,本文证明了在二维全空间上一类带周期位势的薛定谔-泊松方程组高能量解的存在性,且该解存在无穷多个结点区域.更进一步,得到了其基态解的存在性且是不变号的. In this paper,using genus theorem and Nehari manifold techniques in critical points theory, we prove the existence of high energy solutions for a class of SchrSdinger-Poisson systems with periodic potential in dimension two, and obtain that the solution has infinitely nodal domains. Furthermore, the existence of ground state solution is proved which does not change sign
出处 《纯粹数学与应用数学》 2015年第5期542-550,共9页 Pure and Applied Mathematics
基金 上海市自然科学基金(15ZR1429500) 沪江基金(B14005) 上海理工大学培育基金(15HJPYMS03)
关键词 平面薛定谔-泊松方程组 周期位势 结点解 Planar Schrodinger-Poisson systems, periodic potential, nodal solutions
  • 相关文献

参考文献10

  • 1Lieb E H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation [J]. Stud Appl. Math., 1977,57:93-105. 被引量:1
  • 2Lions P L. Solutions of Hartree-Fock equations for Coulomb systems [J]. Commun. Math. Phys., 1984,109:33- 97. 被引量:1
  • 3Ambrosetti A. On SchrSdinger-Poisson systems [J]. Milan Journal of Mathematics, 2008,76:257-274. 被引量:1
  • 4Mugnai D. The SchrSdinger-Poisson system with positive potential [J]. Commun. Partial Differ. Equ., 2013,36:1009-1117. 被引量:1
  • 5Choquard P, Stubbe J, Vuffray M. Stationary solutions of the SchrSdinger-Newton model an ODE ap- proach [J]. Differ. Integral Equ., 2008,21:665-679. 被引量:1
  • 6Cingolani S, Weth T. On the planar Schr6dinger-Poisson system [J]. Ann. I. H. Poincare - AN (2014). 被引量:1
  • 7Lieb E H. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities [J]. Ann. of Math., 1983,118:349-374. 被引量:1
  • 8J. Stubbe, Bound states of two-dimensional SchrSdinger-Newton equation [J]. ArXiv: 0807. 4059, 2008. 被引量:1
  • 9Clapp M, Puppe D. Critical point theory with symmetries [J]. J. Reine Angew. Math., 1991,418:1-29. 被引量:1
  • 10Willem M. Minimax Theorems [M].// Progress in Nonlinear Differential Equations and Their Applications, Vol. 24. Birkhuser: Boston. 1996. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部