期刊文献+

R^N中带周期位势的超线性p-Laplacian方程的无穷多解

Infinitely Many Solutions of Superlinear p-Laplacian Equation with Periodic Potentials in R^N
下载PDF
导出
摘要 在非线性项f是关于u的奇函数,势函数是有界的周期函数且下界是正的,Sobolev嵌入缺乏了紧性和f不再满足(AR)条件下,运用临界点理论中的喷泉定理和集中紧性原则证明了R^N中具有周期势函数的一类超线性p-Laplacian方程存在无穷多非平凡解。 Under these assumptions that the nonlinearity is odd about u,potentials is bounded and periodic and the lower is positive,Sobolev implant is short of tightness and f is no longer satisfy (AR) condition,by using Fountain theorem and concentration-compactness principle,we study the existence of infinitely many solutions for a superlinear p-Laplacian equation in R^N with periodic potentials.
作者 张文丽
机构地区 长治学院数学系
出处 《应用泛函分析学报》 CSCD 2012年第2期166-171,共6页 Acta Analysis Functionalis Applicata
关键词 集中紧性原理 (C)条件 喷泉定理 concentration-compactness principle Cerami's condition fountain theorem
  • 相关文献

参考文献13

  • 1Bartsch Thomas, LIU Zhaoli. On a superlinear elliptic p-Laplacian equation[J]. J Differential Equations, 2004, 198(1): 149-175. 被引量:1
  • 2Degiovanni Marco, Lancelotti Sergio. Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity[J]. Ann lust H Poincare Anal Non Lineaire, 2007, 24(6): 907-919. 被引量:1
  • 3Dinca G, Jebelean P, Mawhin J. Variational and topological methods for Dirichlet problems with p?Laplacian[J]. Port Math (NS), 2001, 58(3): 339-378. 被引量:1
  • 4Liu Shibo. Existence of solutions to a superlinear p-Laplacian equation[J]. Electron,J Differential Equa?tions , 2001, 66, 6pp. 被引量:1
  • 5Perera Kanishka. Nontrivial critical groups in p-Laplacion problems via the Yang index[J]. Topol Methods Nonlinear Anal, 2003, 21(2): 301-309. 被引量:1
  • 6Willem M. Minmax theorems[M]. Boston; Birkhauser,1996. 被引量:1
  • 7李志龙.一维P-Laplacian方程两点边值问题的正解(英文)[J].应用泛函分析学报,2009,11(1):15-19. 被引量:1
  • 8贺铁山,陈文革.一维p—Laplacian方程边值问题多解的存在性[J].应用泛函分析学报,2008,10(4):346-351. 被引量:2
  • 9Ekeland Ivar. Convexity Methods in Hamiltonian Mechanics[M]. Springer, 1990. 被引量:1
  • 10Lions P L. The concentration-compactness principle in the calculus of variations, the locally compact case, part I[J]. Ann lust H Poincare Anal Non Lineaire, 1984, 1(2): 223-283. 被引量:1

二级参考文献17

  • 1Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. New York: CBMS Reg Conf Ser in Math 65,1986. 被引量:1
  • 2Clark D C. A variant of the Liusternik-Schnirelman theory[J]. Indiana University Mathematics Journal, 1972,22:65-74. 被引量:1
  • 3Guo Dajun, Sun Jingxian, Liu Zhaoli. Functional Methods in Nonlinear Ordinary Differential Equations[M]. Ji′nan: Shandong Science and Technology Press,1995. 被引量:1
  • 4Wang Junyu. The existence of positive solutions for the one-dimensional p-Laplacian[J]. Proceedings of the American Mathematical Society, 1997,125 (8) : 2275-2283. 被引量:1
  • 5Sun Weiping, Ge Weigao. The existence of positive solutions for a class of nonlinear boundary value problems[J]. Acta Mathematica Sinica, Chinese Series, 2001,44 (1) : 577-580. 被引量:1
  • 6Guo Yanping, Ge Weigao. Three positive solutions for the one-dimensional p-Laplacian[J]. Journal of Mathematical Analysis and Applications, 2003,286 : 491-508. 被引量:1
  • 7He Xiaoming, Ge Weigao. Two positive solutions for the one-dimensional p-Laplacian boundary value problems[J]. Nonlinear Analysis, 2004,56 : 975-984. 被引量:1
  • 8Liu Bin. The existence of positive solutions of singular boundary value systems with p-Laplacian[J]. Acta Mathematica Sinica, Chinese Series, 2005,48 ( 1 ) : 35-50. 被引量:1
  • 9Pedro Ubilla. Multiplicity results for the 1-dimensional generalized p-Laplacian [J]. Journal of Mathematical Analysis and Applications, 1995,190 : 611-623. 被引量:1
  • 10Li Gongbao, Zhou Huansong. Multipile solutions to p-Laplacian problems with asymptotic nonlinearity as u^(p- 1) at ininity[J]. Journal of the London Mathematical Society, 2002,65 (2) : 123-138. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部