期刊文献+

基于WSRFCM聚类的局部离群点检测算法 被引量:2

Local Outlier Detecting Algorithm Based on WSRFCM Clustering
下载PDF
导出
摘要 针对局部离群度量计算量大的缺点,在LDOF算法的基础上,提出一种新颖的基于聚类的离群点检测算法WSRFCM-LDOF.该算法采用集成粗糙集和阴影集的簇特征加权模糊聚类(WSRFCM)技术作为减少计算量的方法;簇特征加权的聚类算法可以有效处理分布不均匀的簇划分,在此基础上应用粗糙集和阴影集,使得簇特征加权模糊聚类算法可以有效划分交叠的簇,尤其对噪声和异常数据的处理具有高效性.实验表明,所提算法在降低时间复杂度的同时,提高了检测精度. To reduce the amount of calculation for local outlier factor, on the basis of the LDOF algorithm, this paper proposed a novel outlier detect algorithm WSRFCM-LDOF. The algorithm adopted the integration of rough set and shadowed set into feature weighted fuzzy clustering, as a method of reducing the computational effort of local outliers. Associating feature with weights for each cluster is a common approach in clustering algorithms, and it can handle the different distribution of clusters effectively. The experimental results show the proposed algorithm has reduced the time complexity, meanwhile has improved the accuracy of detecting outliers.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第10期129-133,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61203273 61202137) 南京信息工程大学本科生优秀毕业生论文(设计)支持计划
关键词 特征加权 阴影集 阴影粗糙模糊聚类 局部离群度 离群点检测 feature weights shadowed set shadowed rough-fuzzy clustering local outlier degree outlier detection
  • 相关文献

参考文献19

  • 1Cassisi C, Ferro A, RosaIba G. Enaneing density- based clustering: parameter reduction and outlier de- tection [J]. Information Systems, 2013, 38 (3): 317-330. 被引量:1
  • 2张宁.离群点检测算法研究[J].桂林电子科技大学学报,2009,29(1):22-25. 被引量:5
  • 3Han J W, Damber M. Data Mining: Concepts and technologies [ M ]. San Francisco: Morgan Kaufmann, 2001. 被引量:1
  • 4Han J, Kamber M. Data mining: concepts and tech- niques[M]. 2nd ecl. San Francisco: Morgan Kauf- mann, 2006. 被引量:1
  • 5薛安荣,姚林,鞠时光,陈伟鹤,马汉达.离群点挖掘方法综述[J].计算机科学,2008,35(11):13-18. 被引量:69
  • 6Willams G J,Baster R A, He H, et al. A comparative study of RNN for outlier detection in data mining[C] //Proc of International Conference on Data Mining. Maebashi City,Japan: IEEE, 2002 : 709-712. 被引量:1
  • 7陶运信,皮德常.基于邻域和密度的异常点检测算法[J].吉林大学学报(信息科学版),2008,26(4):398-403. 被引量:12
  • 8Reiegel H P , Kroger P , Schubert E, et al. Interpre- ting and unifying outlier scores [C]//Proc of the 11th SIAM International conference on Data Mining. [s. I. ] : IEEE, 2011 : 13-24. 被引量:1
  • 9Barnett V, Lewis T. Outliers in statistical data[M]. New York:John Wiley & Sons, 1994. 被引量:1
  • 10Knorr E M, Ng R T. Algorithms for mining distance- based outliers in large datasets[C]// Proc of Int Conf Very Large Data-based(VLDB' 98). Washington DC, USA: IEEE, 1998 : 392-403. 被引量:1

二级参考文献155

共引文献199

同被引文献35

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部