摘要
针对入侵检测的特点将数据挖掘技术应用于网络入侵检测系统,阐述了网络入侵检测系统的设计原理及其实现。系统的数据挖掘模块应用了序列模式挖掘中的GSP算法,并对其进行了改进,引入了主属性及兴趣度。实验表明,优化后的算法可以有效地提高检测的准确率,使系统的性能获得提升。
The paper applies data mining technology to network intrusion detection system(NIDS) according to the characteristics of NIDS. The design principles and the implementation of the NIDS are illustrated. The main attribute and interest measure are introduced to improve the (GSP) algorithm, which is then applied in the data mining module of the system. The results of experiments show that the precision and performance of the NIDS are improved by the optimized algorithm.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2007年第1期121-125,共5页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金资助项目(60573128)
振兴东北老工业基地科技攻关项目(04-02GG158)
关键词
计算机系统结构
入侵检测
数据挖掘
序列模式
主属性
兴趣度
compuer systems organization
intrusion detection
data mining
sequential pastern
axis attributes
interest measure