期刊文献+

论数学知识的主体维度及其范式张力 被引量:2

On the Subject Dimensions of Mathematical Knowledge and Its Paradigm Tension
原文传递
导出
摘要 柏拉图主义者和实在论者把数学知识设想为理念世界的一部分,人的认识作用被仅仅局限在发现的范围之内。然而,数学知识除了其客观性之外,还具有不可忽视的主观性品质。这种主观性显现在主体内在性和主体间性这两个维度上。前者主要凸显了个体化主体的知识建构特征,而后者与数学共同体所因循的范式紧密相关。这两个维度之间存在着复杂多样的互动和关联,数学知识的广泛空间在这一范式张力中得以展现。 Platonist see the mathematical knowledge as a part of the world of ideas, and then the role of human was limited in the scope of discovery. Apart from its objectivity, mathematical knowledge has subjective to some extent. This subjective embodies in two dimensions such as subject internal- ity and intersubjective. The former behaves in the personal construction of mathematical knowledge, the latter was related with the paradigm of mathe- matical community. There exist complex and multiple interaction and correlation ,the wide space of mathematical knowledge was thus manifested in this paradigm tension.
作者 黄秦安
出处 《自然辩证法研究》 CSSCI 北大核心 2015年第10期114-119,共6页 Studies in Dialectics of Nature
关键词 主体内在性 主体间性 分形 选择公理 范式张力 subject-internality intersubjectivity fractal axiom of choice paradigm tension
  • 相关文献

参考文献18

  • 1Bouveresse J. On the Meaning of the Word Platonism in the Expression Mathematical Platonism [J]. Proceedings of the Aristotelian Society, 2005, 105(1): 55-79. 被引量:1
  • 2[法]曼德尔布罗特.分形对象:形、机遇和维数[M].文志英,苏虹,译.北京:世界图书出版公司,1999:17. 被引量:1
  • 3Fishburn P. C. The Axioms of Subjective Probability [J]. Sta- tistical Science, 1986,1(3):335-345. 被引量:1
  • 4Machina M J, Schmeidler D. A More Robust Definition of Subjective Probability [J]. Econometrica, 1992, 60 (4): 745- 780. 被引量:1
  • 5Fishbum P. C. A General Theory of Subjective Probabilities and Expected Utilities[J]. The Annals of Mathematical Statis- tics, 1969, 40(4):1419-1429. 被引量:1
  • 6White A R. The Probable and the Provable by L. Jonathan Cohen [J]. The Philosophical uarterly, 1979, 29 (114): 89- 90. 被引量:1
  • 7但冰如,谢志刚.主观概率与概率的多元结构[J].运筹学杂志,1991,10(2):39-45. 被引量:1
  • 8Eisenhart L. P , Veblen O. The Riemann Geometry and Its Generalization [J]. Proceedings of the National Academy of Sciences of the United States of America,1922,8(2): 19-23. 被引量:1
  • 9Stromberg K. The Banach-Tarski Paradox [J]. The American Mathematical Monthly, 1979, 86(3): 151-161. 被引量:1
  • 10张光远.近现代数学发展概论[M].重庆出版社,1991. 被引量:2

共引文献1

同被引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部