期刊文献+

一种改进的多模块贝叶斯网络局部推理算法 被引量:4

An Improved Local Inference Algorithm for Multiply Sectioned Bayesian Networks
下载PDF
导出
摘要 针对多模块贝叶斯网络的局部推理的时间和空间复杂度高的问题,提出了一种改进的多模块贝叶斯网络局部推理算法.该算法用面向对象语言重新定义了多模块贝叶斯网络模型,在联合树推理算法的基础上结合图论中"顶点度"的概念对局部推理算法进行了优化,针对三角化结果不唯一的问题,给出了一种一般性的解决方案,使三角化后的结果能够将消息传递得更快,有效地缩短推理时间.给出了算法的仿真实例并进行实验分析,结果表明改进后的推理算法有效减小时间、空间复杂度. Due to the temporal and spatial complexity in the local inference of multiply sectioned Bayesian networks (MSBN ),an improved algorithm for the local inference of MSBN was proposed.The algorithm redefined the model of MSBN with an object-oriented language. Combined with the concept of vertex degree in graph theory,the algorithm was optimized based on the joint tree algorithm.Considering that the outcome of triangulation was not single,the improved algorithm offered a general solution,which helped to convey message faster and greatly shorten inference time.Finally,an instance of the algorithm was given for experimental analysis, whose results showed that the improved inference algorithm significantly reduces both temporal and spatial complexity.
作者 赵建喆 李凯
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第9期1251-1255,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61202085) 教育部高等学校博士学科点专项科研基金资助项目(2012004 2120010)
关键词 多模块贝叶斯网络(MSBN) 局部推理 联合树算法 顶点度 三角化 multiply sectioned Bayesian network local inference joint tree algorithm vertex degree triangulation
  • 相关文献

参考文献9

  • 1Haenni R, Romeijn J W,Wheeler G, et al. Probabilistic logics and probabilistic networks [ M ]. Berlin: Springer,2010. 被引量:1
  • 2Koller D,Pfeffer A. Object-oriented Bayesian networks[ M]. London :Morgan Kaufmann Publishers Inc. , 1997. 被引量:1
  • 3Xiang Y,Jensen F V. Inference in multiply sectioned Bayesian networks with extended Shafer-Shenoy and lazy propagation [ M]. London:Morgan Kaufmann Publishers Inc. , 1999. 被引量:1
  • 4Xiang Y. Belief updating in multiply sectioned Bayesian networks without repeated local propagations [ J ]. International Journal of Approximate Reasoning, 2000, 23 (1):1 -21. 被引量:1
  • 5郭文强,高晓光,侯勇严,周强.采用MSBN多智能体协同推理的智能农业车辆环境识别[J].智能系统学报,2013,8(5):453-458. 被引量:1
  • 6田凤占,张宏伟,陆玉昌,石纯一.多模块贝叶斯网络中推理的简化[J].计算机研究与发展,2003,40(8):1230-1237. 被引量:12
  • 7Jensen F V, Lauritzen S L, Olesen K G. Bayesian updating in causal probabilistic networks by local computations [ J ]. Computational Statistics Quarterly, 1990,4 ( 1 ) :269 - 282. 被引量:1
  • 8Madsen A L, Nilsson D. Solving influence diagrams using HUGIN, Shafer-Shenoy and lazy propagation [ M ]. London: Morgan Kaufmann Publishers Inc. ,2001. 被引量:1
  • 9Jensen F V, Jensen F. Optimal junction trees [ M ]. London : Morgan Kaufmann Publishers Inc. , 1994. 被引量:1

二级参考文献25

  • 1F V Jensen. An Introduction to Bayesian Networks. London:UCL Press, 1996. 被引量:1
  • 2D Heckerman. Bayesian networks for data mining. Data Mining and Knowledge Discovery, 1997, 1(1):79--119. 被引量:1
  • 3D Koller, A Pfeffer. Object-oriented Bayesian networks. In: D Geiger, P P Shenoy eds. Proc of the 13th Conf on Uncertainty in Artificial Intelligence(UAI-1997). San Francisco, CA: Morgan Kaufmann Publishers, 1997. 302--313. 被引量:1
  • 4G F Cooper. The computational complexity of probabilistic inference using Bayesian belief network. Artificial Intelligence,1990, 42(2/3): 393--405. 被引量:1
  • 5Y Xiang, F V Jensen. Inference in multiply sectioned Bayesian networks with extended Shafer-Shenoy and lazy propagation. In:K B Laskey, H Prade eds. Proc of the 15th Conf on Uncertainty in Artificial Intelligence ( UAI-1999 ).San Francisco,CA:Morgan Kaufmann Publishers, 1999. 680--687. 被引量:1
  • 6R Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 1999, 113(1/2): 41-85. 被引量:1
  • 7S L Lauritzen, D J Spiegelhalter. Local computation with probabilities on graphical struetures and their application to expert systems. Journal of Royal Statistical Society, Series B(Methodological), 1988, 50(2): 157--224. 被引量:1
  • 8G R Shafer, P P Shenoy. Probability propagation. Annals of Mathematics and Artificial Intelligence, 1990, 2(1-4) : 327--352. 被引量:1
  • 9A L Madsen, F V Jensen. Lazy propagation: A junction tree inference algorithm based on lazy evaluation. Artificial Intelligence, 1999, 113(1/2): 203--245. 被引量:1
  • 10F V Jensen, F Jensen. Optimal junction trees. In: R L Mantaras,D L Poole eds. Proc of the 10th Conf on Uncertainty in Artificial Intelligence (UAI-1994). San Francisco, CA: Morgan Kaufmann Publishers, 1994. 360-366. 被引量:1

共引文献11

同被引文献23

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部