期刊文献+

一种基于桶树的自动推理问题求解算法

Bucket-Tree Based Algorithm for Automated Reasoning
下载PDF
导出
摘要 桶消元和连接树推理算法是处理自动推理问题的两种常用的推理算法。针对连接树推理算法中消息传播效率问题,提出了一种能有效进行消息传播的连接树推理算法JTR。针对桶消元推理算法BE处理多任务的自动推理问题效率低下的问题,采用连接树结构和连接树推理算法JTR的消息传播方式对桶消元算法BE进行改进和扩展,提出了一种桶树推理算法BJTR。通过对算法BE、BTE和BJTR的时空性能分析发现:与同类算法BTE相比,算法BJTR在空间略有下降的情况下提高了时间性能;针对多任务的自动推理问题,与桶消元推理算法BE相比,BJTR算法的空间略有下降,时间性能得到明显提高;并通过实例和实验进一步验证了算法BJTR针对多任务的自动推理任务具有良好的时间性能。 The bucket elimination algorithm and the join-tree reasoning algorithm are popularly used for automated reasoning.To improve the efficiency of message propagation in the join-tree reasoning algorithm,a new join-tree reasoning algorithm(called JTR) was proposed.Meanwhile,to handle the inefficiency of multi-task automated reasoning of the bucket elimination algorithm BE,a bucket-tree reasoning algorithm(named as BJTR),based on the join-tree structure and message propagation mode in JTR,was further developed from BE.Our study shows that in comparison with the BTE algorithm,the proposed algorithm BJTR improves the time performance while space performance decreases a little.Furthermore,as compared with BE,BJTR effectively reduces the demand on time-overhead while maintaining a slightly low space performance in the handling of multi-task automated reasoning.Meanwhile,both examples and experi-ments demonstrate that BJTR algorithm has an obvious advantage in the time performance for multi-task reasoning.
出处 《计算机科学》 CSCD 北大核心 2013年第1期211-217,共7页 Computer Science
基金 国家自然科学基金(60975034) 安徽省教育厅自然科学一般项目(KJ2010B177) 合肥学院人才科研基金(13RC01)资助
关键词 自动推理 多任务 桶消元 连接树 桶-树 Automated reasoning Multi-task Bucket elimination Join-tree Bucket-tree
  • 相关文献

参考文献14

  • 1Dempster A P. Studies in Fuzziness and Soft Computing[M].Beilin:Springer-Verlag,2008.73-104. 被引量:1
  • 2Gottlob G,Leone N,Scarello F. A Comparison of Structural CSP Decomposition Methods[A].California:Morgan Kaufmann Publishers,1999.394-399. 被引量:1
  • 3季晓慧,张健.约束问题求解[J].自动化学报,2007,33(2):125-131. 被引量:13
  • 4Pearl J. Causality:Models,Reasoning,and Inference[M].Cambridge:Cambridge University Press,2000. 被引量:1
  • 5Butz C J,Yao H,Hua S. A join tree probability propagation architecture for semantic modeling[J].Journal of Intelligent Information Systems,2009,(02):147-158. 被引量:1
  • 6Dechter R. Bucket elimination:A Unifying Framework for Reasoning[J].Artificial Intelligence,1999,(02):41-85. 被引量:1
  • 7Lepar V,Shenoy P P. A comparison of Lauritzen-Spiegelhalter,Hugin and Shenoy-Shafer architectures for computing marginals of probability distributions[A].California:Morgan Kaufmann Publishers,1998.328-337. 被引量:1
  • 8Park J D,Darwiche A. Morphing the Hugin and Shenoy-Shafer Architectures[A].Beilin:Springer-Verlag,2003.149-160. 被引量:1
  • 9Fargier H,Vilarem M. Compiling CSPs into Tree-Driven Automata for Interactive Solving[J].Constraints,2004,(04):263-287. 被引量:1
  • 10田凤占,张宏伟,陆玉昌,石纯一.多模块贝叶斯网络中推理的简化[J].计算机研究与发展,2003,40(8):1230-1237. 被引量:12

二级参考文献15

  • 1季晓慧,张健.求解布尔与非线性数值约束相混合的约束问题(英文)[J].软件学报,2005,16(5):659-668. 被引量:4
  • 2季晓慧,张健.一种求解混合约束问题的快速完备算法[J].计算机研究与发展,2006,43(3):551-556. 被引量:2
  • 3F V Jensen. An Introduction to Bayesian Networks. London:UCL Press, 1996. 被引量:1
  • 4D Heckerman. Bayesian networks for data mining. Data Mining and Knowledge Discovery, 1997, 1(1):79--119. 被引量:1
  • 5D Koller, A Pfeffer. Object-oriented Bayesian networks. In: D Geiger, P P Shenoy eds. Proc of the 13th Conf on Uncertainty in Artificial Intelligence(UAI-1997). San Francisco, CA: Morgan Kaufmann Publishers, 1997. 302--313. 被引量:1
  • 6G F Cooper. The computational complexity of probabilistic inference using Bayesian belief network. Artificial Intelligence,1990, 42(2/3): 393--405. 被引量:1
  • 7Y Xiang, F V Jensen. Inference in multiply sectioned Bayesian networks with extended Shafer-Shenoy and lazy propagation. In:K B Laskey, H Prade eds. Proc of the 15th Conf on Uncertainty in Artificial Intelligence ( UAI-1999 ).San Francisco,CA:Morgan Kaufmann Publishers, 1999. 680--687. 被引量:1
  • 8R Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 1999, 113(1/2): 41-85. 被引量:1
  • 9S L Lauritzen, D J Spiegelhalter. Local computation with probabilities on graphical struetures and their application to expert systems. Journal of Royal Statistical Society, Series B(Methodological), 1988, 50(2): 157--224. 被引量:1
  • 10G R Shafer, P P Shenoy. Probability propagation. Annals of Mathematics and Artificial Intelligence, 1990, 2(1-4) : 327--352. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部